日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Non-collinear magnetic structure of manganese quadruple perovskite CdMn7O12

MPS-Authors
/persons/resource/persons180435

Guo,  H.
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126701

Komarek,  A. C.
Alexander Komarek, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Guo, H., Fernandez-Diaz, M. T., Zhou, L., Yin, Y., Long, Y., & Komarek, A. C. (2017). Non-collinear magnetic structure of manganese quadruple perovskite CdMn7O12. Scientific Reports, 7:, pp. 1-9. doi:10.1038/srep45939.


引用: https://hdl.handle.net/11858/00-001M-0000-002D-2DEB-B
要旨
We report on the magnetic structure of CdMn7O12 determined by powder neutron diffraction. We were able to measure the magnetic structure of this Cd containing and highly neutron absorbing material by optimizing the sample geometry and by blending the CdMn7O12 with Aluminum powder. Below its Neel temperature TN1 all magnetic reflections can be indexed by a single commensurate propagation vector k = (0, 0, 1). This is different to the case of CaMn7O12 where the propagation vector is incommensurate and where an in-plane helical magnetic structure has been found. We observe a commensurate noncollinear magnetic structure in CdMn7O12 with in-plane aligned magnetic moments resembling the ones in CaMn7O12. However, the commensurate propagation vector prevents the appearance of a helical magnetic structure in CdMn7O12. Finally, we also observe a third structural phase transition below similar to 60 K that can be attributed to phase separation.