Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Magnetism and site exchange in CuFeAs and CuFeSb: A microscopic and theoretical investigation

MPG-Autoren
/persons/resource/persons204919

Kraft,  Inga
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126556

Burkhardt,  Ulrich
Ulrich Burkhardt, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126819

Rosner,  Helge
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kamusella, S., Klauss, H.-H., Thakur, G. S., Haque, Z., Gupta, L. C., Ganguli, A. K., et al. (2017). Magnetism and site exchange in CuFeAs and CuFeSb: A microscopic and theoretical investigation. Physical Review B, 95(9): 094415, pp. 1-13. doi:10.1103/PhysRevB.95.094415.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-2234-E
Zusammenfassung
We have investigated the magnetic ground state of CuFeAs and CuFeSb by means of Fe-57-Mossbauer spectroscopy, muon spin rotation/ relaxation (mu SR), neutron diffraction, and electronic structure calculations. Both materials share the 111-LiFeAs crystal structure and are closely related to the class of iron-based superconductors. In both materials there is a considerable occupancy of the Cu site by Fe, which leads to ferromagnetic moments, which are magnetically strongly coupled to the regular Fe site magnetism. Our study shows that CuFeAs is close to an antiferromagnetic instability, whereas a ferromagnetic ground state is observed in CuFeSb, supporting theoretical models of anion height driven magnetism.