English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The art and science of climate model tuning

MPS-Authors
/persons/resource/persons37260

Mauritsen,  Thorsten
Climate Dynamics, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37301

Rauser,  Florian
MPI for Meteorology, Max Planck Society;

/persons/resource/persons37358

Tomassini,  Lorenzo
MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

bams-d-15-00135.1.pdf
(Publisher version), 9MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Hourdin, F., Mauritsen, T., Gettelman, A., Golaz, J.-C., Balaji, V., Duan, Q., et al. (2017). The art and science of climate model tuning. Bulletin of the American Meteorological Society, 98, 589-602. doi:10.1175/BAMS-D-15-00135.1.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-0CB1-8
Abstract
The process of parameter estimation targeting a chosen set of observations is an essential aspect of numerical modeling. This process is usually named tuning in the climate modeling community. In climate models, the variety and complexity of physical processes involved, and their interplay through a wide range of spatial and temporal scales, must be summarized in a series of approximate submodels. Most submodels depend on uncertain parameters. Tuning consists of adjusting the values of these parameters to bring the solution as a whole into line with aspects of the observed climate. Tuning is an essential aspect of climate modeling with its own scientific issues, which is probably not advertised enough outside the community of model developers. Optimization of climate models raises important questions about whether tuning methods a priori constrain the model results in unintended ways that would affect our confidence in climate projections. Here, we present the definition and rationale behind model tuning, review specific methodological aspects, and survey the diversity of tuning approaches used in current climate models. We also discuss the challenges and opportunities in applying so-called objective methods in climate model tuning. We discuss how tuning methodologies may affect fundamental results of climate models, such as climate sensitivity. The article concludes with a series of recommendations to make the process of climate model tuning more transparent