Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Fisher Metric, Geometric Entanglement and Spin Networks

MPG-Autoren

Chirco,  Goffredo
Microscopic Quantum Structure & Dynamics of Spacetime, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons20698

Oriti,  Daniele
Microscopic Quantum Structure & Dynamics of Spacetime, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1703.05231.pdf
(Preprint), 1014KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chirco, G., Mele, F. M., Oriti, D., & Vitale, P. (in preparation). Fisher Metric, Geometric Entanglement and Spin Networks.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-0A49-6
Zusammenfassung
We introduce the geometric formulation of Quantum Mechanics in the quantum gravity context, and we use it to give a tensorial characterization of entanglement on spin network states. Starting from the simplest case of a single-link graph (Wilson line), we define a dictionary to construct a Riemannian metric tensor and a symplectic structure on the space of spin network states, showing how they fully encode the information about separability and entanglement, and, in particular, an entanglement monotone interpreted as a distance with respect to the separable state. In the maximally entangled gauge-invariant case, the entanglement monotone is proportional to a power of the area of the surface dual to the link thus supporting a connection between entanglement and the (simplicial) geometric properties of spin network states. We extend then such analysis to the study of non-local correlations between two non-adjacent regions of a generic spin network. In the end, our analysis shows that the same spin network graph can be understood as an information graph whose connectivity encodes, both at the local and non-local level, the quantum correlations among its parts. This gives a further connection between entanglement and geometry.