English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe

MPS-Authors
/persons/resource/persons62612

Zaehle,  Sönke
Terrestrial Biosphere Modelling, Dr. Sönke Zähle, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;
Terrestrial Biosphere Modelling, Dr. Sönke Zähle, Department Biogeochemical Integration, Prof. Dr. Martin Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

BGC2623.pdf
(Publisher version), 4MB

BGC2623D.pdf
(Publisher version), 2MB

Supplementary Material (public)

BGC2623s1.pdf
(Supplementary material), 356KB

Citation

Thum, T., Zaehle, S., Köhler, P., Aalto, T., Aurela, M., Guanter, L., et al. (2017). Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe. Biogeosciences, 14(7), 1969-1987. doi:10.5194/bg-14-1969-2017.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-0885-E
Abstract
Recent satellite observations of sun-induced chlorophyll fluorescence (SIF) are thought to provide a large-scale proxy for gross primary production (GPP), thus providing a new way to assess the performance of land surface models (LSMs). In this study, we assessed how well SIF is able to predict GPP in the Fenno-Scandinavian region and what potential limitations for its application exist. We implemented a SIF model into the JSBACH LSM and used active leaf-level chlorophyll fluorescence measurements (Chl F) to evaluate the performance of the SIF module at a coniferous forest at Hyytiälä, Finland. We also compared simulated GPP and SIF at four Finnish micrometeorological flux measurement sites to observed GPP as well as to satellite-observed SIF. Finally, we conducted a regional model simulation for the Fenno-Scandinavian region with JSBACH and compared the results to SIF retrievals from the GOME-2 (Global Ozone Monitoring Experiment-2) space-borne spectrometer and to observation-based regional GPP estimates. Both observations and simulations revealed that SIF can be used to estimate GPP at both site and regional scales. At regional scale the model was able to simulate observed SIF averaged over 5 years with r2 of 0.86. The GOME-2-based SIF was a better proxy for GPP than the remotely sensed fAPAR (fraction of absorbed photosynthetic active radiation by vegetation). The observed SIF captured the seasonality of the photosynthesis at site scale and showed feasibility for use in improving of model seasonality at site and regional scale.