English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Deformation-Induced Martensite: A New Paradigm for Exceptional Steels

MPS-Authors
/persons/resource/persons125107

Djaziri,  Soundès
Advanced Transmission Electron Microscopy, Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125256

Li,  Yujiao
Alloy Design and Thermomechanical Processing, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125292

Nematollahi,  Gholamali Ali
Adaptive Structural Materials (Simulation), Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125158

Grabowski,  Blazej
Adaptive Structural Materials (Simulation), Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125156

Goto,  Shoji
Materials Science of Mechanical Contracts, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125219

Kirchlechner,  Christoph
Nano-/ Micromechanics of Materials, Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125233

Kostka,  Aleksander
High-Temperature Materials, External Max Planck Fellow, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125293

Neugebauer,  Jörg
Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons125330

Raabe,  Dierk
Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

/persons/resource/persons75388

Dehm,  Gerhard
Structure and Nano-/ Micromechanics of Materials, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Djaziri, S., Li, Y., Nematollahi, G. A., Grabowski, B., Goto, S., Kirchlechner, C., et al. (2016). Deformation-Induced Martensite: A New Paradigm for Exceptional Steels. Advanced Materials, 28(35), 7753-7757. doi:10.1002/adma.201601526.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-208E-5
Abstract
Atom-probe tomography (APT) and synchrotron X-ray diffraction (XRD) were combined to study the carbon supersaturation of ferrite for two pearlitic steel-wire compositions, eutectoid and hypereutectoid. The samples were cold-drawn at different strains up to true drawing strains for the eutectoid steel and the hypereutectoid steel, respectively. The wire diameters range from 1.7 mm down to 0.058 mm for the eutectoid steel and from 0.54 mm down to 0.02 mm for the hypereutectoid steel. The findings reveal that cold-drawing of pearlitic steel wires leads to a carbon-supersaturated ferrite causing a spontaneous tetragonal distortion of the ferrite unit cell through a strain-induced deformation driven martensitic transformation. We fi nd that the drawing process induced a significant increase in the carbon content inside the originally nearcarbon-free ferrite until a steady state is approached at drawing strains larger than ca. 4 for the wires. The change of carbon concentration in the ferrite grains during the drawing process is closely related to the tetragonal distortion of the ferrite unit cell.