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Abstract. In previous work we have shown the existence of a dynam-
ical horizon or marginally trapped tube (MOTT) containing a given
strictly stable marginally outer trapped surface (MOTS). In this pa-
per we show some results on the global behavior of MOTTs assuming
the null energy condition. In particular we show that MOTSs persist
in the sense that every Cauchy surface in the future of a given Cauchy
surface containing a MOTS also must contain a MOTS. We describe
a situation where the evolving outermost MOTS must jump during
the coalescence of two seperate MOTSs. We furthermore characterize
the behavior of MOTSs in the case that the principal eigenvalue van-
ishes under a genericity assumption. This leads to a regularity result
for the tube of outermost MOTSs under the genericity assumption.
This tube is then smooth up to finitely many jump times. Finally we
discuss the relation of MOTSs to singularities of a space-time.

1 Introduction

In previous work [AM05, AM07], we considered marginally trapped surfaces,
or more specifically, marginally outer trapped surfaces (MOTS). These were
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studied in the context of initial data sets without regarding their time de-
pendence. In this note we shall consider the behavior of outermost MOTSs
in the context of Cauchy slicings. The main result in this respect is that
when a MOTS exists initially, it persists, provided the developing spacetime
satisfies the null energy condition. Moreover, the domain bounded by these
outermost MOTSs, in a given Cauchy slice, contains the intersection of the
causal future of the initial one with the Cauchy slice. This is a generalization
of the fact, that in the smooth case a strictly stable MOTS gives rise to a
spacelike tube foliated by MOTSs in its vicinity [AMS05, AMS08]. This is
the content of section 3. Then we discuss some questions of regularity of
the so defined family of MOTSs. To get started, we show in section 4 that
sometimes the outermost MOTS must jump. We consider the case where
two bodies with separate MOTSs surrounding them come close enough to-
gether. In such a scenario the outermost MOTS jumps before the individual
MOTSs make contact. In section 5 we analyze the targets of such jumps
under a genericity condition. We find that the target of such a jump generi-
cally is part of a marginally outer trapped tube which is tangent to the time
slice at the jump time and lies to the future of that slice. In section 6 we
look at some global regularity properties of the family of outermost MOTS.
In particular we show that generically jumps are the only singularities that
can happen, and that they are discrete. Finally, in section 7 we conclude
with a version of the well-known singularity theorems which works for outer
trapped surfaces. The ideas for its proof are all present in the literature, al-
though we were not able to find the precise statement of the given theorem.
The closest references are probably in [Gan76] and [Tot94].

2 Preliminaries

We consider data sets for the Einstein equations. These are triples (M, g,K)
where M is a compact 3-manifold with boundary, g a Riemannian metric and
K a symmetric 2-tensor on M . We assume that ∂M has two disconnected
parts ∂M = ∂−M ∪ ∂+M . We equip the inner boundary ∂−M with the
normal vector pointing intoM and the outer boundary ∂+M with the normal
vector pointing out of M .

Assume that Σ ⊂M is a surface in the interior of M that encloses a region
Ω together with the outer boundary ∂+M , that is ∂Ω = Σ ∪ ∂+M . If Σ is
embedded, then this is equivalent to the condition that Σ be homologous to
∂+M and we choose the outer normal on Σ as the vector field pointing into
Ω, that is in direction of the outer boundary. This vector is denoted by ν
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subsequently.

For a surface Σ homologous to ∂+M , we define the outgoing null expansion

as

θ+[Σ] = P +H

where P = trK − K(ν, ν) and H is the mean curvature of Σ with respect
to the outer normal as defined above.

We say that a surface Σ which is homologous to ∂+M is a marginally outer
trapped surface (MOTS) if

θ+[Σ] = 0.

We define an outermost MOTS in M to be an embedded MOTS Σ homol-
ogous to ∂+M which bounds a region Ω together with ∂+M , such that for
any other such MOTS Σ′, homologous to ∂+M , bounding Ω′ together with
∂+M , it holds that if Ω′ ⊂ Ω, then Σ′ = Σ. This is the global notion of
being outermost also used in [AM07].

Given a MOTS Σ in M we linearize the operator θ+ near Σ in the following
way. Given a function f on Σ, define the surface Σf as the image of the
parametrization

GM
f : Σ →M : x 7→ expx(f(x)ν),

where ν is the outer normal to Σ and exp the exponential map of M . It is
clear that if f is smooth and ε is small enough, Σεf is a smooth embedded
surface if Σ is. The linearization of the operator θ+ at f = 0 is then given
by the following linear, elliptic second order differential operator

∂

∂ε

∣

∣

∣

∣

ε=0

GM
f ◦ θ+[Σεf ] = LMf

= − Σ
∆f + 2S(Σ∇f) + f

(

ΣdivS − 1
2
|χ+|2 − |S|2 + 1

2
ΣSc − µ− J(ν)

)

.

Here Σ
∆, Σ∇ and Σdiv are the Laplace-Beltrami operator, the tangential

gradient and the divergence along Σ, χ+ = A + KΣ with A the second
fundamental form of Σ in M and KΣ the tangential projection of K to Σ.
Furthermore S(·) = K(ν, ·)T , where (·)T denotes orthogonal projection to
TΣ. ΣSc is the scalar curvature of Σ, µ = 1

2

(

MSc − |K|2 + (trK)2
)

, and
J = divK − d(trK).

The operator LM has a unique eigenvalue λ which minimizes the real part
in the spectrum of LM . λ is real, the corresponding eigenspace is one-
dimensional and the non-zero functions in this eigenspace have a sign. λ is
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called the principal eigenvalue of LM . We say that a MOTS Σ is stable if
λ ≥ 0 and strictly stable if λ > 0. When referring to the principal eigenvalue
of a MOTS subsequently we always mean the principal eigenvalue of LM on
that MOTS. Further details can be found in [AMS05, AM05, AMS08].

From [AM07, Section 7], we recall the following notion. For embedded sur-
faces Σ homologous to ∂+M bounding a region Ω together with ∂+M , we
say that the interior set U := M \ Ω is called weakly outer trapped set if
θ+[Σ] ≤ 0. The weakly outer trapped region T of M is the union of all
weakly outer trapped sets in M :

T :=
⋃

{

Ω : Ω is weakly outer trapped
}

.

For brevity, we will call T the trapped region. Under the above assumptions,
if ∂−M is non-empty and has θ+[∂−M ] < 0, the trapped region T will also
be non-empty and include a neighborhood of ∂−M . Thus it makes sense to
define the outer boundary of T as

∂+T = ∂T \ ∂−M.

The following theorem was proved in [AM07, Theorem 7.3], see also [And09].

Theorem 2.1. Let (M, g,K) be as described above with θ+[∂−M ] < 0 and

θ+[∂+M ] > 0. Then the outer boundary ∂+T of the trapped region is a

smooth, stable, embedded MOTS.

Further properties of outermost MOTS derived in [AM07] include the fol-
lowing estimates.

Theorem 2.2. Assume that (M, g,K) has θ+[∂−M ] < 0 if ∂−M is non-

empty and θ+[∂+M ] > 0. Then there exist constants C and δ > 0 depending

only on the geometry of (M, g,K) with the following property.

If Σ is an outermost MOTS homologous to ∂+M in (M, g,K) then

|A| ≤ C and i+(Σ) ≥ δ.

Here |A| is the norm of the second fundamental form of Σ in M and 2i+(Σ)
is the minimum length that a geodesic starting on Σ in direction of the outer

normal must travel before it can meet Σ a second time.

Finally, we introduce some notation. Assume that (L, h) is a Lorentzian
spacetime manifold with boundary, foliated by spacelike slices

L = M × I
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where I ⊂ R is some interval and M a three dimensional manifold as above.
We choose the time orientation on L so that t ∈ I increases to the future.
We denote Mt := M × {t} for t ∈ I and let (gt, Kt) be the first and second
fundamental form of Mt in (L, h). The lapse function along Mt is denoted
by αt := |L∇t|−1. The Kt and αt are computed with respect to the future
directed unit normal. We will always assume without further notice that h,
gt and αt are smooth on all of L up to the boundary, and furthermore that
∂M × I is also smooth. For sections 3 and 4 we actually need only C2 and
in section 5 and 6 we need C2,α regularity.

In this setting a marginally outer trapped tube (MOTT) adapted to Mt is a
smooth three dimensional manifold H such that Σt := H ∩Mt is a smooth,
two-dimensional, embedded MOTS in Mt. Later we will also consider tubes
where the Σt are only immersed.

3 Evolution of outermost MOTSs

In this section we discuss the evolution of the outermost MOTSs in a Lo-
rentzian spacetime (L, h) as described in section 2. Assume that L satisfies
the null energy condition (NEC), that is assume that

LRc(l, l) ≥ 0

for all null vectors l, where LRc denotes the Ricci-tensor of L.

We restrict our attention to compact slices with boundary. In particular, as
described in section 2, assume that ∂M has two disconnected parts ∂M =
∂−M ∪∂+M . Note that neither ∂−M nor ∂+M is assumed to be connected.
We always assume that ∂+M be non-empty but allow in certain cases the
∂−M = ∅. We will subsequently write ∂Mt (∂−Mt, ∂

+Mt) to denote ∂M×{t}
(∂−M × {t}, ∂+M × {t}). We assume that θ+[∂−Mt] < 0 whenever ∂−Mt

is non-empty and θ+[∂+Mt] > 0 with respect to the data (gt, Kt) for all
t ∈ [0, T ]. The assumption that ∂+M is non-empty implies the existence of
some outer untrapped surface.

Note that here we do not consider the smooth evolution of MOTSs which
is based on the inverse function theorem and relies on strict stability as in
[AMS05, AMS08]. The goal is to formalize a sketch to construct a MOTT
given in the previous two references.

Our main result in this setting is the following.
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Theorem 3.1. Let L = M × [0, T ] be a spacetime satisfying the NEC such

that ∂Mt = ∂+Mt with θ+[∂+Mt] > 0 or that ∂Mt = ∂−Mt ∪ ∂+Mt with

θ+[∂−Mt] < 0 and θ+[∂+Mt] > 0.

Assume that the trapped region T0 in (M0, g0, K0) is non-empty. Then for

all t ∈ [0, T ] the trapped region Tt of (Mt, gt, Kt) is also non-empty.

Furthermore, if J+(T0) denotes the causal future of T0 in L, then we have

J+(T0) ∩Mt ⊂ Tt.

If this inclusion is not strict at time τ > 0, then J+(T0) ∩Mt = Tt for all

t ∈ [0, τ ] and ∂+Tt satisfies χ+ ≡ 0 and LRc(l+, l+) = 0.

The interpretation of this theorem is that if there exists an initial MOTS in
M0, then at all later times there also exists a MOTS in Mt that encloses the
points in Mt which are in the causal future of the trapped region of M0, and
thus the terminology trapped region is indeed justified. If the ∂+Tt form a
smooth MOTT, then this means in particular that this MOTT is achronal.

Proof. The proof is based on the Raychaudhuri equation. Denote by Στ :=
∂+Tτ the outermost MOTS in Mτ . Let Γ+

τ denote the null-surface generated
by the outgoing null normal l+ on Στ and by Γ+

τ,t the intersection of Γ+
τ with

Mt.

Since L and all αt are smooth, the constants from theorem 2.2 are uniform
in τ . This implies that there exists a δ > 0 depending only on the geometry
of L and not on the particular τ such that the surface Γ+

τ,t is embedded and
homologous to ∂+Mt for all t ∈ [τ, τ + δ].

By the Raychaudhuri equation and the null energy condition we know that

θ+(Γ+
τ,t) = −αt(|χ

+|2 + LRc(l+, l+)) ≤ 0

and thus Γ+
τ,t is contained in the trapped region Tt as claimed. Note that

the inclusion is strict unless |χ+|2 + LRc(l+, l+) = 0. Since Γ+
τ,t encloses

the causal future of the region enclosed in Στ , we also find the inclusion
J+(Tτ ) ⊂ Tt for all t ∈ [τ, τ + δ].

Hence we can start with τ = 0 show that the claim holds up to time δ and
then restart at time δ and iterate the argument. �

Hence the Ht := ∂+Tt are non-empty for t ∈ [0, T ] and we can consider the
set

H :=
⋃

t∈[0,T ]

Ht ⊂M × [0, T ].

We will make some remarks about the regularity of this set in section 6.
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4 Coalescence of MOTSs

This section is devoted to an informal description of the coalescence of sep-
arate components of the outermost MOTSs into one during the time evo-
lution. The result here is that if two separate MOTS approach, and come
close enough, then the outermost MOTS must jump before the two pieces
make contact. We work in the same setting as before.

Assume that we have an initial data set with two separate MOTSs Σ1
0 and

Σ2
0. If these two MOTSs evolve to MOTSs Σi

t, with i = 1, 2 in such a way
that

dist(Σ1
t ,Σ

2
t ) → 0 (4.1)

as t approaches some time T , then it has been observed in numerical simula-
tions that a common MOTS enclosing both Σ1

t and Σ2
t appears before they

actually make contact. Here we show that this has to be the case in general.

Theorem 4.1. Let (Mt, gt, Kt) for all t ∈ [0, T ] be a smooth family of initial

data sets such that ∂Mt splits into disconnected parts ∂Mt = ∂−Mt ∪ ∂
+Mt

with θ+[∂−Mt] < 0 and θ+[∂+Mt] > 0.

Suppose that for all t ∈ [0, T ] there exists a MOTS Σt homologous to ∂+Mt

such that Σt has at least two components Σ1
t and Σ2

t with the property that

dist(Σ1
t ,Σ

2
t ) → 0 as t→ T.

Then there exists a τ ∈ [0, T ) such that the trapped region Tτ of (Mτ , gτ , Kτ )
has one connected component which contains both Σ1

τ and Σ2
τ .

Remark 4.2. The interpretation of the theorem is as follows. Assume that
initially Σt is outermost and that the Σt form a smooth MOTT. If Σt has
two components Σ1

t and Σ2
t which approach each other, then before they

make contact, Σt must stop being outermost, say at time t = τ . Hence
the outermost MOTS jumps away from Στ . Instead, Σ1

τ ∪ Σ2
τ is contained

in the interior of one connected component of Tτ , and thus in the trapped
region the interiors of Σ1

τ and Σ2
τ have merged. The outer boundary of this

component is therefore a common MOTS enclosing Σ1
τ and Σ2

τ .

Proof. The proof is based on the surgery procedure introduced in [AM07,
Section 6]. There, we were able to show that a MOTS that comes close to
itself can be modified by inserting a small neck to construct a weakly outer
trapped surface outside.
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∂−MT

∂+MT

∂−M0∂−M0

Hτ

Σ1
0 Σ2

0

∂+M0

Σ1
τ Σ2

τ

∂−MT

HT

Σ1
T Σ2

T

Figure 1: The situation in Theorem 4.1. Two separate MOTS Σ1
0 and Σ2

0

approach each other. At time τ < T a common enclosing MOTS Hτ appears,
the outermost MOTS thus jumps from two separate pieces to a common one.
In section 5 we will show if such a jump occurs, then the jump target at time
τ will bifurcate into two branches at times > τ . This is indicated by the
dotted lines.

In [AM07, Section 6], some work was invested into the point selection for
surgery. Here, we do not need the special properties, but we do the surgery
at the points pt ∈ Σ1

t and qt ∈ Σ2
t which realize the distance dist(Σ1

t ,Σ
2
t ),

provided this is small enough. The neck to be inserted is then of size com-
parable to dist(Σ1

t ,Σ
2
t ), and has as axis the geodesic γt joining pt and qt in

M . The rest of the construction is otherwise analogous.

Choose 0 ≤ τ < T large enough, so that this procedure is applicable for all
t ∈ [τ, T ]. Denote the region enclosed between Σt and ∂+Mt by Ωt and the
geodesic joining Σ1

t and Σ2
t by γt. The result of the surgery procedure is a

weakly outer trapped surface Σ′
t in Ωt ∪ Σt, enclosing a region Ω′

t together
with ∂+M , such that Ωt \ Ω′

t contains a neighborhood of Σ1
t ∪ Σ2

t ∪ γt in
Ωt ∪ Σt.

An application of theorem 2.1 to the manifold Ω′
t with inner boundary Σ′

t

and outer boundary ∂+M yields an outermost MOTS Σ′′
t in Ω′

t, which is also
the outermost MOTS in Mt. �

8



5 Past isolated outermost MOTS

In this section we analyze the question, what happens if the outermost
MOTS jumps in time. To this end assume that L is a spacetime satisfy-
ing the NEC with a foliation

L = M × (−T, T )

by spacelike slices Mt = M × {t}. As usual, we assume that ∂M is the
disjoint union ∂M = ∂−M ∪ ∂+M and that with respect to all data sets
(gt, Kt) we have that θ+[∂−M ] < 0 and θ+[∂+M ] > 0. Then, in particular,
M0 contains an outermost MOTS Σ.

We will now assume that Σ ⊂ M0 is the target of a jump in the outermost
MOTSs in the Mt for t < 0. We formalize this in the assumption that
each component of Σ be stable and past isolated. Here stability is as defined
in section 2. A MOTS Στ ⊂ Mτ is called past isolated if there exists a
neighborhood U of Στ in L such that Mt ∩ U does not contain a MOTS for
all t ∈ (−T, τ). We say that Στ is present isolated if there is a neighborhood
V of Στ in Mτ such that Στ is the only MOTS in V .

A jump of the outermost MOTS arises for example in the coalescence of
MOTSs, as described in section 4, as after the jump Ht will be past isolated.
We show that generically Σ locally splits into two branches of MOTSs in
the immediate future of Σ. Before we state the actual theorem, we have to
introduce some notation.

Let n be the timelike future unit normal to M0 in L and let ν be the spacelike
outer unit normal to Σ in M0. Then we define the null frame l± = n ± ν

along Σ.

We denote by W the function

W = |χ+|2 + LRc(l+, l+)

The first term in W is non-negative since it is a sum of squares, whereas the
NEC implies non-negativity of the second term.

We say that Σ satisfies the genericity assumption in the spacetime L if

W 6≡ 0 on Σ. (5.1)

Denote by Γ+ the null-cone generated by the outgoing null-normal l+ of Σ
and by Γ− the null-cone generated by the ingoing null-normal l−. Denote
by Γ±

t := Γ± ∩Mt the cross-sections of Γ± in Mt. Note that by the above

9



assumptions Σ lies in the interior of M0 and hence so do the Γ±

t for |t| small
enough. Since we are only interested in the situation local to Σ we can
assume that T is so small that the Γ±

t are smooth surfaces in the interior of
Mt.

In [AMS05] a MOTT was constructed near a strictly stable MOTS. The
following argument is an analogue to this construction if the MOTS Σ is
only marginally stable that is, when Σ is stable but not strictly stable, and
satisfies the genericity condition.

Proposition 5.1. Let L and (Mt, gt, Kt) be as above. Assume that Σ ⊂M0 is

a connected, marginally stable MOTS, that is the principal eigenvalue of LM

on Σ satisfies λ = 0, and that Σ satisfies the genericity assumption (5.1).

Then there exists a three dimensional, spacelike, MOTT Ĥ containing Σ
which is tangent to M0 at Σ. There exits a neighborhood U of Σ such that

all MOTS Σ′ ⊂Mt ∩ U for t ∈ (−T, T ) are of the form Ĥ ∩Mt.

M0

Γ+
0 = Σ

Γ+

Σf,t

exp(fνt)

Mt

Γ+
t

νt

Ĥ

Figure 2: The situation of Proposition 5.1. Σ is a marginally stable MOTS
and satisfies the genericity assumption. Then it is contained in a MOTT Ĥ
tangent to M0.

Proof. We work in Hölder spaces C2,α. Here the choice of α is not critical,
so we fix one α > 0 for the remainder of the proof.
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We construct the surfaces Γ+
t as above and parametrize them by a map

G0 : Σ × (−T, T ) → L

such that Γ+
t = G0(Σ, t) and ∂G0

∂t
= α0l

+, where αt denotes the lapse function
of the foliation (Mt, gt, Kt).

There exists a neighborhood U ⊂ C2,α(Σ) of 0 ∈ C2,α(Σ) such that the map

Gf : Σ × (−T0, T0) → L : (p, t) 7→ expMt

G0(p,t)

(

f(p)νt(G0(p, t))
)

,

is well-defined for all f ∈ U . Here expMt

G0(p,t) is the exponential map of Mt

at G0(p, t) ∈ Γ+
t and νt is the outer normal of Γ+

t . We set Σf,t := Gf(Σ, t)
and assume that U and T are small enough to ensure that the Σf,t are
C2,α-surfaces in Mt.

Consider the functional

Θ : U × (−T, T ) → C0,α(Σ) : (f, t) 7→ Gf(·, t)
∗θ+[Σf,t].

Here θ+[Σf,t] denotes θ+ evaluated on Σf,t with respect to the data (gt, Kt).

Since

∂G0

∂t

∣

∣

∣

∣

t=0

= α0l
+ and

∂Gsf (·, 0)

∂s

∣

∣

∣

∣

s=0

= fν,

it is well-known (cf. the setup in [AMS05]) that

DfΘ(0, 0)f = LMf, and DtΘ(0, 0) = −α0W

where LM is the linearization of θ+ in M0.

Since the principal eigenvalue of LM is equal to zero, the kernel of LM

is one-dimensional and spanned by a positive function φ. We denote by
X ⊂ C2,α the L2-orthogonal complement of span{φ} in C2,α and decompose
C2,α(Σ) = X ⊕ span{φ}.

Denote by L∗
M the (formal) L2-adjoint of LM . Then L∗

M also has a kernel,
which is spanned by a smooth, positive function ψ. We denote by Y the L2-
orthogonal complement of span{ψ} in C0,α(Σ) and by PY the L2-orthogonal
projection of C0,α(Σ) onto Y . Then Y = range(LM) and LM |X : X → Y is
an isomorphism.

In particular, the implicit function theorem [Nir74, Theorem 2.7.2] implies
that for the operator

ΘY : U × (−T, T ) → Y : (f, t) 7→ PY (Θ(f, t))

11



there exist constants ε > 0, δ > 0 and a function

x : (−ε, ε) × (−δ, δ) → X : (κ, t) 7→ x(κ, t)

with x(0, 0) = 0 such that

ΘY (x(κ, t) + κφ, t) = 0. (5.2)

for all (κ, t) ∈ (−ε, ε)× (−δ, δ). The uniqueness part of the implicit function
theorem furthermore implies that all solutions (y, s) ∈ X × (−δ, δ) to the
equation ΘY (y, s) = 0 with y close enough to 0 are of the form y = x(κ, s).

Differentiating equation (5.2) with respect to κ at (κ, t) = (0, 0) yields that

PY LM

(

∂x

∂κ

∣

∣

∣

∣

(κ,t)=(0,0)

+ φ

)

= 0.

Since X ∩ kerLM = {0} we thus find that

∂x

∂κ

∣

∣

∣

∣

(κ,t)=(0,0)

= 0. (5.3)

To construct MOTSs near Σ it thus remains to solve the equation

(1 − PY )Θ
(

x(κ, t) + κφ, t
)

= 0,

which is a scalar equation in two variables. To solve this equation we define
the function

ϑ : (−ε, ε) × (−δ, δ) → R : (κ, t) 7→

∫

Σ

ψΘ
(

x(κ, t) + κφ, t
)

dµ.

Note that by the above

∂

∂t

∣

∣

∣

∣

(κ,t)=(0,0)

Θ
(

x(κ, t) + κφ, t
)

= LM

(

∂x

∂t

∣

∣

∣

∣

t=0

)

+DtΘ(0, 0).

Since LM maps into Y which is L2-orthogonal to ψ, we thus find that

Dtϑ(0, 0) = −

∫

Σ

α0Wψ dµ.

By the non-degeneracy assumption W ≥ 0 and W 6≡ 0, we find that

Dtϑ(0, 0) < 0.
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Thus the implicit function theorem implies that there exists a ε′ > 0 and a
function τ : (−ε′, ε′) → R with τ(0) = 0 such that

ϑ
(

κ, τ(κ)
)

= 0

for all κ ∈ (−ε′, ε′). Again all solutions close enough to zero are of this form.

As before we can calculate that

∂τ

∂κ

∣

∣

∣

∣

κ=0

= −(Dtϑ)−1(Dκϑ)
∣

∣

∣

(κ,t)=(0,0)
= 0. (5.4)

Define the map

Φ : Σ × (−ε′, ε′) → L : (p, κ) 7→ Gx(κ,τ(κ))+κφ

(

p, τ(κ)
)

.

By the above construction the surfaces Σκ := Φ(Σ, κ) are MOTS in Mτ(κ).
In view of equations (5.3) and (5.4) we calculate that

∂Φ

∂κ

∣

∣

∣

∣

(κ,t)=(0,0)

= φν

This vector field is nowhere zero on Σ and normal to Σ. Thus the set

Ĥ := Φ
(

Σ, (−ε′, ε′)
)

is a smooth manifold. Furthermore, ∂Φ
∂κ

∣

∣

(κ,t)=(0,0)
is spacelike along Σ and

tangent to M0. Hence we infer that Ĥ is spacelike and tangent to M0. �

This proposition implies the main theorem of this section.

Theorem 5.2. Let L and (Mt, gt, Kt) be as above and assume that Σ ⊂ M0

is an outermost MOTS. Let Σ′ ⊂ Σ be a past isolated component of Σ. If

Σ′ satisfies the genericity assumption (5.1) there exists a three dimensional,

spacelike, MOTT Ĥ containing Σ′ which lies in M0 or to the future of M0.

Furthermore if Σ′ is also present isolated then Ĥ is such that

1. M0 ∩ Ĥ = Σ′,

2. Mt ∩ Ĥ = Σ−

t ∪ Σ+
t where Σ+

t is a MOTS outside of Γ+
t and Σ−

t is a

MOTS inside Γ−

t , provided t > 0 is small enough.
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Proof. Since Σ is outermost each of its components and thus Σ′ in particular
is stable. If Σ′ were strictly stable, then the result from [AMS05] could be
used to to construct a MOTS extending to the future and past of Σ′, whence
Σ′ can not be strictly stable. Thus Σ′ is marginally stable and proposition 5.1
implies the existence of a spacelike MOTT Ĥ containing Σ′, which is tangent
to Σ′ at M0. Since Σ′ is past isolated Ĥ lies in M0 or to the future of M0.
Since Σ′ is part of an outermost MOTS, the outgoing part of Ĥ must lie in
the future of M0.

If Σ′ is present isolated, then the ingoing part of Ĥ also lies to the future of
M0. The fact that Ĥ is tangent to M0 and is spacelike implies the claims
about the location of Ĥ. �

Remark 5.3. If Σ is not present isolated, and the genericity assumption (5.1)
holds on Σ we can perturb the slicing Mt such that M0 changes only inside of
Σ such that Σ becomes present isolated. In general, in the perturbed slicing
Σ need no longer be past isolated, even if it was originally.

In [AMS08, Theorem 9.4] it was shown that if there is a MOTT Ĥ′ in a
slicing (Mt, gt, Kt) for t ∈ [0, T ) and the MOTS Σ′

t = Ĥ′∩Mt are connected,
strictly stable and have a smooth limit Σ′

T as t → T , then if the principal
eigenvalue of Σ′

T is zero, Ĥ′ must be tangent to MT along Σ′
T . Besides the

non-degeneracy assumption, the result there has a further technical assump-
tion, on which we will not comment.

Proposition 5.1 also implies that Ĥ is tangent to Σ0 provided its principal
eigenvalue is zero. Thus the argument given here can be used to give another
proof of the tangency property without further technical conditions. We can
state the following version of [AMS08, Theorem 9.4].

Theorem 5.4. Let L ⊃ M × [0, T ] be a partially sliced spacetime satisfying

the NEC such that the data (gt, Kt) are smooth on the closure of M × [0, T ],
the boundary ∂M splits into ∂M = ∂−M ∪ ∂+M and θ+[∂+Mt] > 0 for all

t ∈ [0, T ].

Let Ĥ be a MOTT adapted to the slicing, such that Σt = Ĥ ∩ Mt is a

stable MOTS homologous to ∂+M in Mt for t ∈ [0, T ). If the area |Σt| is

bounded as t → T then there exists a stable MOTS ΣT in MT extending

Ĥ. If the principal eigenvalue of ΣT is zero and ΣT satisfies the genericity

assumption (5.1), then Ĥ is tangent to Σ.

Proof. The existence of the limit ΣT follows from the compactness of stable
MOTS [AM05, Theorem 8.1]. Although convergence there is only asserted
in C1,α, in view of elliptic regularity for the equation θ+ = 0 together with

14



the C1,α- bounds, this implies Ck-convergence for all k ≥ 0, provided L is
smooth enough.

Assuming that ΣT has principal eigenvalue zero and satisfies the genericity
condition, we can construct a MOTT Ĥ′ near ΣT which is tangent to MT

as in the proof of theorem 5.2. Since the implicit function theorem implies
that Ĥ′ is the unique adapted MOTT near ΣT it has to agree with Ĥ and
hence the theorem is proved. �

Remark 5.5. The previous argument has an interesting implication for the
continuation of MOTTs. In fact, the constructed Ĥ′ continues Ĥ beyond
ΣT . However, it is not clear whether this continuation does extend Ĥ to
the future. If the Ĥ′ curves to the past, we can conclude that the Σt were
not outermost. Hence, if the Σt are outermost for t ∈ [0, T ), then Ĥ can be
continued, either as a foliation of MT by MOTSs near ΣT or to the future
of MT . In this case also the area bound is automatic for the Σt (cf. [AM07,
Theorem 6.5]).

6 Regularity of MOTTs

In this section, we use the arguments from section 5 to analyze regularity of
the set

H :=
⋃

t∈[0,T ]

∂+Tt ⊂ M × [0, T ]

constructed in section 3. Before we consider the more specific setting of
section 5 where the genericity assumption is assumed, we make some general
observations about H.

Let τ ∈ (0, T ). The compactness theorem for stable MOTSs in [AM05, The-
orem 8.1] in combination with the area estimate [AM07, Theorems 6.3 and
6.5] guarantees that as t ր τ the embedded, stable MOTS Ht accumulate
on an embedded, stable MOTS ΣP

τ ⊂ Tτ . Using the C1,α result in the refer-
ence and elliptic regularity, we can assume that this is in C2,α if the ambient
spacetime metric is smooth enough, that is C2,α.

We now introduce projections πt,τ : Mt → Mτ which project a point x ∈ Mt

to the intersection of the integral curve of ∂
∂t

through x with Mτ . By the
causal structure of the Ht, we find that all projections of the Ht for t < τ

lie inside of Hτ . As the limit of Ht as t ր τ agrees with the limit of the
πt,τ (Ht), we see that this limit is one-sided. Thus we can conclude that the
Ht actually converge to a unique limit, which is then given by this ΣP

τ . Since
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we have a positive lower bound on the outward injectivity as in theorem 2.2,
we find that the limit ΣP

τ must be embedded.

Analogously, we can take a limit of the MOTS Ht as t ց τ . Again [AM05,
Theorem 8.1] in combination with [AM07, 6.5] guarantee that we get a limit
ΣF

τ , with convergence from the outside in the sense given above. However,
ΣF

τ need no longer be embedded since [AM07, Theorem 6.3] only implies that
the limit can not touch itself from the outside. This causes some difficulties
below.

Definition 6.1. Assume that τ ∈ (0, T ).

1. The MOTS ΣP
τ is called limit from the past, whereas ΣF

τ is called limit
from the future.

2. If ΣP
τ 6= Hτ then τ is called past jump time. If ΣF

τ 6= Hτ then τ is

called future jump time.

3. τ is called jump time if it is either a future or past jump time.

Remark 6.2. 1. By definition ΣP
τ lies in Tτ and thus, at each jump time τ

the volume between ΣP
τ and ∂+Tτ is positive. This implies that there

are only countably many past jump times in [0, T ].

2. Similarly, if ΣF
τ is embedded, then it also lies in Tτ and thus agrees

with ∂+Tτ . Hence τ is a future jump time, if and only if ΣF
τ is not

embedded. In this case the limit is from the outside and thus ΣF
τ can

not intersect the interior of ∂Tτ since all the projections πt,τ (∂Tt) for
t > τ lie outside of Hτ due to the causal structure of H. Hence there
also must be some volume between Hτ and ΣF

τ . This implies that there
are only countably many future jump times in [0, T ].

3. The causal structure, that is local achronality, of H implies that it is
of class C0,1 near non-jump times.

This is very little information on the regularity of H. We actually expect
that the jump times are discrete and that, if the slicing behaves well, in
fact there are only finitely many jumps. Moreover, what is the regularity of
H in spacetime at times which are not jump times? We will answer these
questions below under the genericity assumption.

We want to pose a few further interesting questions that we do not address
here. If τ is a past or future jump time, then one would also like to compare
the area of the Σ

P/F
τ and Hτ .
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In case the spacetime settles to a steady state, we expect that at late times
H is a smooth MOTT and approaches the event horizon, provided the space-
time approaches a stationary state.

Furthermore, in some special situations we expect that H is part of a single
smooth MOTT Ĥ even if there are jump times. An example of this is de-
scribed in [AMS05]. It is then interesting to investigate the causal character
of Ĥ \ H.

Before we turn to the local regularity theorem, we introduce some notation.
If I ⊂ [0, T ] we denote

HI :=
⋃

t∈I

Ht ⊂ H.

Theorem 6.3. Let τ ∈ (0, T ) and assume that each component of Hτ is

either strictly stable or satisfies the genericity assumption (5.1).

1. If τ is not a past jump time then there exists a δ− = δ−(τ) > 0 such

that H(τ−δ−,τ ] is a smooth MOTT.

2. If τ is not a future jump time then there exists a δ+ = δ+(τ) > 0 such

that H[τ,τ+δ+) is a smooth MOTT.

3. If τ is not a jump time then there exists a δ = δ(τ) > 0 such that

H(τ−δ,τ+δ) is a smooth MOTT. In particular (τ − δ, τ + δ) does not

contain further jump-times.

Proof. We only show the first assertion, since the second is proved similarly
and the third is a consequence of the first two.

Thus assume that τ ∈ (0, T ] is not a past jump time. In case Hτ is strictly
stable, we can apply the implicit function theorem as in [AMS05] to construct
a smooth MOTT extending Hτ to the past and the future. In case Hτ is
not strictly stable but satisfies the genericity condition (5.1), we can apply
proposition 5.1 to construct an ingoing and outgoing MOTT around Hτ .
Since the uniqueness part of the implicit function theorem implies that in
both cases the respective adapted MOTTs are unique near Hτ , we get that
in particular the Ht for t ∈ (τ − δ−, τ ] lie on this MOTT. Here δ(τ) is a
positive number depending on the geometry of Hτ in L. Hence H(τ−δ−,τ ]

agrees with this MOTT and is smooth. �

The structure of H near jump times is analyzed in the following theorem.
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Theorem 6.4. 1. Let τ ∈ (0, T ) be a past jump time, and assume that

each component of ΣP
τ is either strictly stable or satisfies the genericity

assumption. Then there exists a δ− = δ−(τ) > 0 such that H(τ−δ−,τ) is

a smooth MOTT which extends to a smooth MOTT H′ such that H′

includes ΣP
τ .

2. Let τ ∈ (0, T ) be a future jump time, and assume that each component

of ΣF
τ is either strictly stable or satisfies the genericity assumption.

Then there exists a δ+ = δ+(τ) > 0 such that H(τ,τ+δ+) is a smooth

MOTT which extends to the past as a smooth immersed MOTT by

adding ΣF
τ .

Proof. The proof follows from the same argument as before, by an applica-
tion of the implicit function theorem to components of ΣP

τ or ΣF
τ .

Note that in particular non-embeddedness of ΣF
τ is not an issue, since it

may only touch itself from the inside. The implicit function theorem in
Proposition 5.1 can also be applied to immersed surfaces to construct an
immersed tube around ΣF

τ . As this construction implies that the scalar
product of the future pointing or outward tangent to the tube and the outer
normal to ΣF

τ is positive, we infer that the MOTS along the tube which are
outside or to the future of ΣF

τ are indeed embedded. �

Combining theorems 6.3 and 6.4 we arrive at the following global statement.

Theorem 6.5. Assume that all components of the following MOTS are either

strictly stable or satisfy the genericity assumption (5.1):

1. Ht, for all t ∈ [0, T ],

2. ΣP
t whenever t is a past jump time, and

3. ΣF
t whenever t is a future jump time.

Then there are finitely many times

0 = τ0 < τ1 < . . . τN < τN+1 = T

such that each τk for k = 1, . . . , N is a jump time and the piece

H(τk ,τk+1)

for k = 0, . . . , N is a smooth MOTT, which can be extended as a smooth

immersed MOTT by adding ΣF
τk

in the past, and ΣP
τk+1

in the future.
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7 The relation of outer trapped surfaces to sin-

gularities

In this section, we revisit the classical singularity theorem of Penrose [HE73,
Section 8] in the perspective of outer trapped surfaces. In particular, we
want to clarify that under suitable assumptions, the presence of an outer
trapped surface — without assumptions on the ingoing expansion — implies
that a spacetime is not geodesically complete. Although the results in this
section are not new, they do not seem to be well-known either. Therefore
we give a short presentation of the arguments involved. The ideas presented
here appear in the classical reference [HE73] and in [Gan76]. In fact, our
argument is very close to [Tot94].

Theorem 7.1. Let (L, h) be a globally hyperbolic Lorentzian spacetime satis-

fying the null energy condition LRc(v, v) ≥ 0 for all null-vectors v.

Assume that L contains a Cauchy surface M such that Σ ⊂ M is a C2-

surface which separates M into two disconnected parts M \ Σ = M− ∪M+.

Let the outer normal along Σ be the one pointing into M+. If θ+[Σ] < 0,
where θ+[Σ] is calculated with respect to this choice of normal, and M+

is a connected, non-compact manifold with boundary Σ, then L is not null

geodesically complete.

Remark 7.2. Assume that M and Σ are as above, except that Σ is a stable
MOTS instead of having θ+ < 0. Then, if each component of Σ is either
strictly stable or satisfies the genericity assumption (5.1) then M and Σ
can locally be deformed in L to a Cauchy surface M ′ and a surface Σ′ with
θ+(Σ) < 0.

Proof. As usual we will assume that L is geodesically complete and deduce
a contradiction. We denote by J+(Σ) the future causal development of Σ in
L. Its boundary ∂J+(Σ) is generated by null-geodesic segments with past
endpoints on Σ and orthogonal to Σ. Denoting by l+ and l− a choice of
outgoing and ingoing null normal fields. Then the generators of ∂J+(Σ) are
tangent to either l+ or l− where they meet Σ.

Assume that p ∈ ∂J+(Σ) can be connected to Σ by a null geodesic γ1 :
[0, 1] → L such that γ1(0) ∈ Σ, γ̇1(0) = l+ and γ1(1) = p. Then it can
not happen that there is also a null geodesic γ2 : [0, 1] → L such that
γ2(0) ∈ Σ, γ̇2(0) = l− and γ2(1) = p. This can be seen as follows. First note
that γi(t) ∈ ∂J+(Σ) for all t ∈ (0, 1]. One can define a continuous curve

19



γ : [0, 2] → ∂J+(Σ) such that

γ(t) =

{

γ1(t) t ∈ [0, 1]

γ2(2 − t) t ∈ [1, 2].

Let τ be a time function on L. Then we can define the projection Φ : L→ M

such that Φ(p) = q if and only if p lies on the integral curve of ∇τ which
meets M at the point q. Since L is globally hyperbolic, Φ is well defined
on all of L. Define γ̃ : [0, 2] → M as γ̃(t) = Φ(γ(t)) for all t ∈ [0, 2]. This
continuous curve starts and ends on Σ and has the property that γ̃(t) ∈M+

for t ∈ (0, ε) and γ̃(t) ∈ M− for t ∈ (2 − ε, 2). By continuity, and since
Σ separates, there exists t0 ∈ [ε, 2 − ε] with γ̃(t0) ∈ Σ. By definition, this
means that Φ(γ(t0)) ∈ Σ, but this is impossible, as it would imply that
γ(t0) ∈ ∂J+(Σ)∩ I+(Σ), where I+(Σ) denotes the chronological future of Σ.

We thus infer that ∂J+(Σ)\Σ splits into two parts ∂J+(Σ) = H+∪H− where
H+ is generated by the outgoing null-geodesic segments and H− is generated
by ingoing null-geodesic segments. The standard convergence results for
geodesic congruences imply that each null-geodesic leaves H+ after a finite
value of the affine parameter. This implies that H+ is a compact Lipschitz
manifold with boundary Σ.

By the above argument it is easy to see that Φ maps H+ into M+. Since M+

is non-compact but Φ(H+) is, we have that M+ 6= Φ(H+). Then Φ(H+)
must have a boundary besides Σ in M+ as M+ is connected. This is not
possible as this would imply that ∇τ is tangent to H+ somewhere. This
yields the desired contradiction. �
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