Towards a Visual Privacy Advisor: Understanding and Predicting Privacy Risks in Images

Tribhuvanesh Orekondy  Bernt Schiele  Mario Fritz

Max Planck Institute for Informatics
Saarland Informatics Campus
Saarbrücken, Germany
{orekondy,schiele,mfritz}@mpi-inf.mpg.de

Abstract

With an increasing number of users sharing information online, privacy implications entailing such actions are a major concern. For explicit content, such as user profile or GPS data, devices (e.g. mobile phones) as well as web services (e.g. facebook) offer to set privacy settings in order to enforce the users’ privacy preferences.

We propose the first approach that extends this concept to image content in the spirit of a Visual Privacy Advisor. First, we categorize personal information in images into 68 image attributes and collect a dataset, which allows us to train models that predict such information directly from images. Second, we run a user study to understand the privacy preferences of different users w.r.t. such attributes. Third, we propose models that predict user specific privacy score from images in order to enforce the users’ privacy preferences. Our model is trained to predict the user specific privacy risk and even outperforms the judgment of the users, who often fail to follow their own privacy preferences on image data.

1. Introduction

It is widely agreed that privacy is becoming a major concern [6][11]. As more people obtain access to the internet, a large amount of personal information becomes accessible to e.g. other users, web service providers and advertisers. To counter these problems, more and more devices (e.g. mobile phone) and web services (e.g. facebook) are equipped with mechanisms where the user can specify privacy settings to comply with his/her personal privacy preference.

While this has proven useful for explicit and textual information, we ask how this concept can generalize to media content. While users can be asked (as we also do in our study) to specify how comfortable they are releasing a certain type of image content, the actual presence of such content is implicit in the image and not readily available for a privacy preference enforcing mechanism nor the user. In fact – as our study shows – people frequently misjudge the privacy relevant information content in an image – which leads to failure of enforcing their own privacy preferences.

Hence, we work towards a broader vision of a Visual Privacy Advisor [Figure 1] that helps the users to enforce his/her privacy preferences and prevents leakage of private information. We approach this complex problem by first making personal information explicit by categorizing such information into 68 image attributes. Based on such attribute prediction and user privacy preferences, we infer a privacy score that can prevent unintentional sharing of in-
Our model is trained to predict the user specific privacy risk and interestingly outperforms human judgment on the same images.

Our main contributions in this paper are as follows: (i) To the best of our knowledge, we are the first to formulate the problem of identifying a diverse set of personal information in images and further personalizing predictions to users based on their privacy preferences. (ii) We provide a sizable dataset of 22k images annotated with 68 privacy attributes. (iii) We conduct a user study and analyze the diversity of users’ privacy preferences as well as the level to which they achieve to follow their privacy preferences on image data. (iv) We propose the first model for Privacy Attribute Prediction. We also extend it to directly estimate user-specific privacy risks. (v) Finally, we show that our models outperform users in following their own privacy preferences on images.

2. Related Work

Privacy is becoming an increasing concern, especially due to the rise of social networking websites allowing individuals to share personal information, without explaining consequences of these actions. In this section, we discuss work that highlights these concerns and explores consequences of such actions. We also discuss literature that deals with identifying private content in images and text.

Identifying Personal Information There is a comparably small body of work that aims at recognizing personal information. Aura et al. model this as a privacy-classification problem, whereas Geng et al. detect four types of personal information – email addresses, telephone numbers, addresses and money. The closest related work to ours is, who are also motivated by unwanted disclosure and privacy violation on social media. They approach the task as classifying if an image is public or private based on features extracted from a Convolutional Neural Network and user-generated tags for the image. However, we will later show that users have different notions of privacy and hence this cannot be modeled as a binary classification problem. Instead, we first tackle a more principled problem of predicting the privacy-sensitive elements present in images and use these in combination with users preferences to estimate privacy risk and contribute the first sizable dataset to study the problem.

Leakage and De-anonymization A problem closely related to ours is privacy leakage, which deals with uncovering and analyzing methods leading to disclosure of personal information, rather than detection before such incidents. uncover privacy leakage when websites accidentally provide user information embedded in HTTP requests when contacting third-party aggregators. As leakages can be user-intended, Yang et al. explore this case in Android applications. Some works study the case where users identity, location or other details can be de-anonymized when aggregating anonymized data across multiple social networks. In contrast to these, our approach is concerned about image content and privacy preferences.

Privacy Preferences and Social Networks Due to the rising popularity of social media, study types of personal information disclosed on these websites. Other popular related tasks include preserving one’s privacy while using social networks and exploring privacy settings. However in our user study, apart from collecting and analyzing user studies on privacy preferences for images, we additionally use them to train computational models based on image data.

Privacy and Computer Vision Several works explore detecting individual privacy attributes such as license plates, age estimation from facial photographs, social relationships, face detection, landmark detection and occupation recognition. Apart from detecting attributes, some works introduce new privacy challenges in vision such as adversarial perturbations, privacy-preserving video capture, person re-identification, avoiding face detection and full body re-identification. In this work, we present a new privacy challenge in computer vision designed to help users to assess risk before sharing images on social media that encompasses a broad range of personal information in a single study.

Datasets for Privacy Tasks Crucial to exploring privacy tasks are images revealing private details such as faces, names or opinions. However, many popular large image datasets do not contain a significant number of such images to effectively study privacy tasks. Although some datasets contain such information, they are either too small or simply not representative of images people upload on social networks. The closest candidate for privacy-tasks is the PIPA dataset with 37,000 Flickr images. However, this is primarily for people recognition in an unconstrained setting and does not include images covering many other privacy aspects such as license plates, political views or official identification documents. As a result, we introduce the first dataset of real-life Flickr images capturing these important attributes crucial for understanding the role of computer vision for privacy tasks.

\[\text{Dataset and code will be made publicly available after publication.}\]
3. The Visual Privacy (VISPR) Dataset

Mobile devices and social media platforms have implemented privacy settings, so that users can communicate their privacy preferences w.r.t different type of textual information. How does this concept transfer to image data? We need to establish a similar conceptualization of privacy relevant information types – but now for images. This will allow us to later query users about their privacy preferences concerning these information types, as we will do in the next section.

Therefore, we propose in this section a categorization of personal information into 68 privacy attributes such as gender, tattoos, email addresses or fingerprints an image can have. We collect a sizable dataset of 22k images that allows the study of privacy relevant attributes in images and the training of automatic recognizers.

Privacy Attributes

As motivated before, we need a conceptualization of personal content in images – akin to the privacy settings deployed in today’s devices and services. Therefore, we define in the following a list of privacy attributes an image can have and therefore denotes the types of personal information that are “hidden” in the image content.

The primary challenge here is the lack of a recognized list of privacy attributes, which motivates us to compile attributes from multiple sources. First, we consolidate relevant attributes for our task by referring to examples and guidelines for handling Personally Identifiable Information provided in the EU Data Protection Directive 95/46/EC and the US Privacy Act of 1974. Secondly, we add relevant attributes mentioned in the rules on various social networking websites (e.g., Twitter, Reddit, Flickr), which prohibit sharing personal information. Finally, we manually examine images that are shared on these websites and identify additional attributes. As a result, we draft an initial set of 104 potential privacy attributes. As discussed in the next section, these are reduced to 68 attributes (see Table 1) due to lack of appearance in images of the remaining ones. Definitions and examples for the privacy attributes are provided in Appendix A.

Annotation Setup

The annotation was set up as a multi-label task to three annotators. A web-based tool was provided to select multiple boxes corresponding to the 104 privacy attributes per image. Additionally, annotators could mark if they were unsure about their annotation. In case none of the provided privacy labels applied, they were instructed to label it as safe, which we use as one of our privacy attributes. Images were discarded if either the annotator was unsure, or if the image contained a copyright watermark, was a historic photograph, contained primarily non-English text, or was of poor quality.

Data Collection and Annotation Procedure

In this section, we discuss the steps we took to obtain the final set of 22k images annotated with 68 privacy attributes.

Seed Sample We first gather thousands of images using the URLs from the OpenImages dataset a collection of ~9 million URLs to Flickr Images The annotators, using the definition and examples provided, annotate 10,000 images randomly selected from the downloaded images.

Handling Imbalance Based on the label statistics from these 10,000 images, we add images to balance attributes with fewer than 100 occurrences. These additional images are added by querying relevant OpenImages labels possibly representative of insufficient privacy attributes.

Extended Search for Rare Classes In spite of using the above strategy, 37 attributes contain under 40 images. We manually add images for these attributes by querying them and relevant keywords on Flickrr. We do not add multiple images from the same album. For credit cards, we manually obtain 50 high-quality images from Twitter, which are the only non-Flickr images in our dataset.

Selected Attributes After annotating the dataset with the initial 104 labels, we discarded 19 labels because either (i) images were extremely difficult to obtain manually (e.g., iris/retinal scan, insurance details) or (ii) the set of images did not clearly represent the attribute. We additionally merged groups of attributes which captured similar concepts (e.g., work and home phone number). In the end, we obtain a dataset of 22,167 images, each annotated with one or more of 68 privacy attributes.

Curation Since the three annotators annotate independent sets of images, we curate the dataset to reduce labeling mistakes. For this, we organize the dataset into batches of images with each batch corresponding to a privacy attribute. We verify all attribute batches which either contain fewer than 500 images or are considered sensitive by users.

Splits We perform a random 45-20-35 split with 10,000 training, 4,167 validation and 8,000 test images. The final statistics of our dataset is presented in Table 1. The labels and its distribution in our dataset is shown in Figure 2.

4. Understanding Privacy Risks

In the previous section, we presented the VISPR dataset comprising 22k images over 68 privacy attributes, which provides a categorization of person information. In this section, we factor in users and explore how their personal privacy preferences relate to these attributes (Section 4.1).
were male, 78% were under 40 years of age with 57% from workers in this survey. Out of the 305 respondents, 59%
We collect responses of 305 unique AMT Participants
lar privacy attribute.
these responses as users privacy preference for this particu-
volved if you accidentally shared details on personal occa-
For instance: “How much would you find your privacy vi-
if they accidentally shared details relating to the attribute.
We now want to understand how good users are at judg-
ing their personal privacy risks based on images. Therefore,
USA and 38% from India. Additionally, 75% were regular
Facebook users, 80% and 44% reported to be aware of and
have used Twitter and Flickr at least once.
Analysis In order to understand the diversity in user’s pri-
we first cluster the users based on their preferences into user privacy profiles. We cluster using K-
means, with $K = 30$ as this yields the lowest silhouette score $[30]$. This enables visualizing the preferences over
the attributes, as seen in Figure 3, where each row represents the preferences for one of the 30 user profiles (ordered
based on number of users associated with the profile). We
observe from this study: (i) Users show a wide variety of preferences. This validates our claim requiring user-spe-
cific privacy risk predictions. (ii) The majority (Profiles 1-4,
7-11, 13-14, 18-20 in Figure 3), who display a similar order of sensitivity to the attributes, except for minor variations
(iii) The minority (Profiles 21-30), who are particularly sen-
tive to some attributes such as their political view, sexual
orientation or religion. (iv) The uniformly-sensitive users
(Profiles 5, 6, 12, 15, 17), who are uniformly sensitive to all attributes even though to different degrees.

4.2. Users and Visual Privacy Judgment

We now want to understand how good users are at judg-
ing their personal privacy risks based on images. Therefore,
we first ask participants to judge their personal privacy risk
based on an image (without explicitly mentioning the in-
volved attribute) and afterwards asking explicitly for the ac-
tual user’s privacy preferences for this particular attribute.

User Study In this study, we split the survey into two parts. In the first part, the users are shown a group of
3-6 images and asked how comfortable they are sharing such images. Responses are collected on a scale of 1 to
5, where: (1) Extremely comfortable (2) Slightly comfor-
table (3) Somewhat comfortable (4) Not comfortable (5) Ex-
tremely uncomfortable. Each group of images represents one of the 68 privacy attributes. In most cases, the attributes


device, we want to understand how good users are at en-
forcing their own privacy policy on visual data when they
make judgments based on image data (Section 4.2). We
conduct two user-studies to answer each of these questions,
are discussed in the next two sections.

4.1. Understanding Users’ Privacy Preferences

In this study, we want to understand privacy preferences w.r.t. the defined privacy attributes.

User Study We present each user with a series of 72 questions in a randomized order. Each of these questions corre-
sponds to either exactly one of 67 privacy attributes (ex-
cluding the safe attribute) or a control question. The user is
asked how much he/she would find his/her privacy violated if they accidentally shared details relating to the attribute.
For instance: “How much would you find your privacy vi-
olated if you accidentally shared details on personal occa-
sions you have attended (like a birthday party or friend’s wedding.” Responses for the question are collected on a
scale of 1 to 5, where: (1) Privacy is not violated (2) Privacy is slightly violated (3) Privacy is somewhat violated (4) Pri-
vacy is violated (5) Privacy is extremely violated. We treat
these responses as users privacy preference for this particu-
lar privacy attribute.

Participants We collect responses of 305 unique AMT workers in this survey. Out of the 305 respondents, 59%
were male, 78% were under 40 years of age with 57% from

<table>
<thead>
<tr>
<th>Split</th>
<th>All</th>
<th>Train</th>
<th>Val</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Images</td>
<td>22,167</td>
<td>10,000</td>
<td>4,167</td>
<td>8,000</td>
</tr>
<tr>
<td>Labels</td>
<td>115,742</td>
<td>51,799</td>
<td>22,026</td>
<td>41,917</td>
</tr>
<tr>
<td>Avg Images/Label</td>
<td>5.22</td>
<td>5.18</td>
<td>5.29</td>
<td>5.24</td>
</tr>
<tr>
<td>Max Images/Label</td>
<td>10,460</td>
<td>4,710</td>
<td>1,969</td>
<td>3,781</td>
</tr>
<tr>
<td>Min Images/Label</td>
<td>44</td>
<td>20</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

Table 1: Dataset Statistics

Figure 2: Label distribution in our dataset. Y-axis indicates the number of images.
Figure 3: Privacy preferences of user profiles for the privacy attributes. Darker colors represent higher privacy-sensitivity to attributes. Each row corresponds to one of the 30 profiles and the number in brackets on the Y-axis represents the number of users mapped to the profile. Rows are ordered based on number of users linked to the profile.

Figure 4: Users are asked to rate on a scale of 1-5 how much an attribute affects their privacy. X-axis denotes their privacy preference and Y-axis denotes their evaluation of risk on images. The red markers indicate privacy attributes with highly underestimated or overestimated user ratings.

occur isolated and are the most prominent visual cue in the image. We refer to these responses as human visual privacy score. The second part is identical to questions in the previous user-study on privacy preferences. Each question is designed to obtain the privacy preference of the user for each attribute. As before, the user rates on a scale of 1 (Not Violated) to 5 (Extremely Violated). We refer to these responses as privacy preference score.

Participants We split the study into two parts to prevent user fatigue. Each part contains only half of the attributes. We obtain 50 unique responses for this survey from AMT. In each of these parts, roughly: 70% of the respondents were under 40 years, 57% were male and 87% were from USA. Additionally, 80% responded that they use Facebook, 84% Twitter and 46% Flickr.

Analysis We compute for each attribute average privacy preference score and human visual scores and visualized them as a scatter plot in Figure 4. From the results, we observe: (i) The off-diagonal data points show a clear inconsistency in the users required privacy preference and in their judgment of privacy risk in images. (ii) For cases close to the diagonal, like credit cards, passport and national identification documents, users display similar behavior on images and attributes. (iii) However, when photographs are natural scenes containing people or vehicles, users underestimate (below diagonal) the privacy score, such as in the case of family photographs or cars displaying license plate...
numbers. (iv) They overestimate (above diagonal) the privacy risk of some photographs showing birth place or their name. We speculate this is because of the nature of the photographs, which are often official documents stating these details. (v) Users display a wide range of privacy preferences on some attributes such as being photographed in a protest, or expressing their political views.

5. Predicting Privacy Risks

In this section, we make a step towards our overall goal of a Visual Privacy Advisor. As illustrated in Figure 5, we follow a similar paradigm as implemented e.g. on social networks that defines privacy risk based on the content type and user specific privacy settings. In our case, the content type is described by attributes as discussed in the previous section (user-independent). We combine these with the user’s privacy preferences to determine if the image contains a privacy violation.

First, we describe our model for privacy attribute prediction in Section 5.1, followed by our approaches to personalized privacy risk prediction in Section 5.2. We end with a comparison of human judgment of privacy risks in images against the performance of our proposed models in Section 5.3.

5.1. Privacy Attribute Prediction

In this section, we define the user-independent task of predicting privacy attributes from images. Then we present and evaluate different methods on our new VISPR dataset.

Task We propose the task of Privacy Attribute Prediction, which is to predict one or more of 68 privacy attributes based on an image. This can be seen as a multilabel classification problem that recognizes different type of personal information visual data and therefore has the potential to make this information explicit. Figure 1 shows multiple examples for this task that illustrate typical challenges of this task due to image diversity, subtle cues and high level semantics.

Metric To assess performance of methods for this task, we compute the Average Precision (AP) per class, which is simply area under the Precision-Recall curve for the attribute. Additionally, the overall performance of a method is given by Class-based Mean Average Precision, which is the average of the AP scores across attributes.

Methods For feature representations, we experiment with three types of visual features extracted from CNNs – CaffeNet [19], GoogleNet [39] and ResNet-50 [18], which we fine-tune based on a multi-label classification loss with sigmoid activations. On top, we train a linear SVM model. In a pilot study, we found that the multilabel SVM with smoothed hinge loss [24] yields better results than standard SVM multi-label prediction [8] and cross-entropy loss. Hence we use it in the experiments.

Results Qualitative results of our method is shown in Figure 6 (more discussed in Appendix B) and quantitative results in Table 2. We additionally present the Average Precision scores per class in Figure 7. We make the following observations: (i) The CNN performs well in attributes such as tickets, passports, medical treatment that correlated well with scenes (e.g. airport, hospital). It also performs well in recognizing attributes which are human-centric, such as faces, gender and age. (ii) Fine-grained differences cause confusions such as predicting student IDs for drivers licenses or differentiating between street and other signboards. (iii) We observe failure modes due to small details in the image, such as tattoos, rings which indicate one’s marital status or a credit card in the hands of a child. (iv) Another shortcoming is not being able to recognize relationship-based attributes (e.g. personal or social relationships, vehicle ownership) which requires reasoning based on interaction of multiple visual cues in an image rather than just their presence.

5.2. Personalizing Privacy Risk Prediction

In the previous section, we discussed predicting privacy attributes in images, a method independent of user privacy...
preferences. In this section, we investigate user-specific visual privacy feedback – which we call a privacy risk score.

**Task**  As illustrated in Figure 5, we combine privacy attributes (user independent) together with the privacy preferences based on these attributes (user specific) to arrive at a privacy risk. As we allow the users to give scores for each attributes based on their privacy preferences, we define the following privacy risk score.

**Definition 1. Privacy Risk Score** For some image $x$, user preference $u \in [0,5]^A$ and attribute predictions $y \in [0,1]^A$ the privacy risk score of image $x$ containing attributes $y$ on user $u$ is $\max_a y_a u_a$.

This represents the user specific score of the most sensitive attribute in an image. As a result, the privacy-risk score is comparable to the preference-score: 0 (Not Sensitive) to 5 (Extremely Sensitive). As illustrated in Figure 5, we compute the ground-truth privacy risk score based on ground-truth attribute annotation for an image and true privacy preferences of users.

**Method: Attribute Prediction-Based Privacy Risk (AP-PR)**  Our first method performs Attributed-Based Privacy Risk (AP-PR) prediction. As illustrated in Figure 5, we make use of the privacy attribute prediction from the previous section and combine it with the profile’s privacy preferences (that we can assume as provided by the users also at test time). From these two sources, we can directly compute the privacy risk score as defined above.

**Method: Privacy Risk CNN (PR-CNN)** We propose a Privacy Risk CNN (PR-CNN) that is not directly using the user profile’s privacy preferences – only indirectly via the ground-truth. The key observation is that AP-PR scores suffer from erroneous attribute predictions (see Figure 7). Therefore, we extend the the privacy attribute prediction network by a shallow neural network to directly predict the privacy risk score and fine-tuning it on the new task. A parameter search for the shallow neural network yielded best results using two fully-connected hidden layers of 128 neurons, each followed by sigmoid activations. We finetune this network from the Googlenet Privacy Attribute Prediction network for 30 user profiles described in Section 4 and combine it with the profile’s privacy preferences (that we can assume as provided by the users also at test time). From these two sources, we can directly compute the privacy risk score as defined above.

**Evaluation**  We use two metrics for evaluation. First, the $L_1$ error averaged over all images and profiles, as it represents the mean absolute difference between the ratings. Secondly, we calculate the Precision-Recall curves for varying
thresholds of sensitivity which indicates how well our models detect images above a certain true privacy risk.

In our experiments, we use the previously introduced user-profiles instead of individual users in order to cater to all the diverse privacy preferences equally that we have seen in the previous section.

The evaluation of our approach on these metrics is presented in Table 3 (Qualitative examples provided in Appendix C). Each graph in Figure 8 represents ground-truth thresholded to obtain a particular risk interval, such that any score above this threshold is considered private. We then obtain the PR-curves for each interval by thresholding scores estimated by AP-PR and PR-CNN. This allows us to estimate performance of our method at various levels of sensitivity.

From these results, we observe: (i) PR-CNN performs better in predicting risk compared to directly using the attributes. Notably, the prediction is on average less than one step on the scale from 1 to 5 away from the true privacy risk. (ii) Moreover, it is better in detecting high-risk images, as shown in Figure 8. In particular, we notice better recall for high-risk images. We discuss profile-specific PR curves in Appendix C.

5.3. Humans vs. Machine

In Section 4 we have shown inconsistency in users’ privacy preferences and their assessment of privacy risks in images. In this section, we compare our proposed approach for evaluating privacy risk on the same images in order to compare them to human judgment.

In our second user study (subsection 4.2), users first assessed privacy risk in images when asked for comfort level of sharing images – each of which corresponds to a certain privacy attribute. In the next part of the survey, users provided their privacy preferences when asked how much they find their privacy violated by revealing images related to the same privacy attribute. We have computed scores with our privacy risk models AP-PR and PR-CNN on those very same image.

As a result, for each image, we have (a) the users’ privacy preference (b) the users’ privacy risk judgment from images (c) our AP-PR privacy risk score from images (d) our PR-CNN privacy risk score from images. All these scores are on a scale of 1 (Not Sensitive) to 5 (Extremely Sensitive). Using the users desired preference as the ground-truth, we now ask: who is better at reproducing the user’s desired privacy preference on images? As from the previous section, we use precision-recall and L1-error as metrics to compare the desired preference score (a) and predicted privacy risk score for evaluation (b, c, d).

The precision-recall-curves for the three candidates are presented in Figure 9. Evaluation using the L1-error is discussed in Appendix D. We observe: (i) AP-PR achieves better precision-recall for the task than PR-CNN and – remarkably – is even consistently better than the users’ image-based judgment. (ii) On average, the PR-CNN estimates privacy risks (L1 error = 1.03) slightly better than the user’s image-based judgment (L1 error = 1.1) and AP-PR (L1 error = 1.27).

6. Conclusion

We have extended the concept of privacy settings to visual content and have presented work towards a Visual Privacy Advisor that can provide feedback to the users based on their privacy preferences. The significance of this research direction is highlighted by our user study which shows users often fail to enforce their own privacy preferences when judging image content. Our survey also cap-
tures typical privacy preference profiles that show a surprising level of diversity. Our new VISPR data allowed us to train visual models that recognize privacy attributes, predict privacy risk scores and detect images that conflict with user’s privacy. In particular, a final comparison of human vs. machine prediction of privacy risks in images, shows an improvement by our model over human judgment which highlights the feasibility and future opportunities of the overarching goal – a Visual Privacy Advisor.

Acknowledgement
This research was supported by the German Research Foundation (DFG CRC 1223). We thank Paarjaat Aditya, Philipp Müller and Julian Steil for advice on the user study. We also thank Dr. Mykhaylo Andriluka for valuable feedback on the paper.

References
X. Sun, P. Wu, and S. C. H. Hoi. Face detection using P. J. Rousseeuw. Silhouettes: a graphical aid to the interpre-
M. Shao, L. Li, and Y. Fu. What do you do? occupation F. Pittaluga and S. J. Koppal. Privacy preserving optics for
M. H. Veiga and C. Eickhoff. Privacy leakage through inno-
S. J. Oh, R. Benenson, M. Fritz, and B. Schiele. Faceless C. Neustaedter, S. Greenberg, and M. Boyle. Blur filtration fails to preserve privacy for home-based video confer-
C. Neusaedter, S. Greenberg, and M. Boyle. Blur filtration fails to preserve privacy for home-based video confer-
32. C. Neusaedter, S. Greenberg, and M. Boyle. Blur filtration fails to preserve privacy for home-based video confer-

Appendices

A. Privacy Attributes and Examples

A complete list of privacy attributes with descriptions and an example image is given in Table 4. We consider all these cases when viewing the image in its original high-resolution form. We use these definitions to any subject in the image – either in the foreground or background.

B. Additional Qualitative Examples for Privacy Attribute Prediction

In Section 5.1 (Lines 572–631) we discussed our approach to Privacy Attribute Prediction – a user-independent method of predicting multiple privacy attributes given an image. In this section, in addition to Figure 6 (Lines 702–715), we present additional qualitative examples in Figure 10. Each row represents images of a particular privacy attribute. The True Positives column indicate the case when this attribute is in both the ground-truth and predicted set of privacy attributes. The False Positives column indicate images when the attribute is incorrectly predicted. The False Negatives column indicate images when the attribute is in ground-truth, but we observe our method associates privacy attributes to distinctive visual cues such as clothing (for occupation and ethnic clothing), exposed skin (for tattoos, nudity), metallic objects with wheels (for physical disability, license plates) and text (for names, drivers license, username, handwriting). As a result, apart from correct predictions, we find that this also leads to incorrectly predicting attributes (e.g. predicting card-shaped identification documents as drivers licenses, cars for license plates) or failing to recognize attributes in a different context (e.g. handwriting on a wall instead of documents, new types of drivers licenses). We also observe our approach underperform in differentiating between full, first and last names, or usernames and email addresses (which requires text-based reasoning), identifying relationships and sexual orientation (which requires interpreting interaction between multiple people) and differentiating occupations, religion and ethnic clothing (which requires fine-grained recognition).

C. Additional Results for Personalized Privacy Prediction

In this section, we discuss additional results for Section 5.2: Personalizing Privacy Risk Prediction.

C.1. Qualitative Results

Figure 11 presents qualitative results for our approach to user-specific Personalized Privacy Risk Prediction discussed in Section 5.2 (Lines 688 – 748). To visualize the qualitative results over all 30 user profiles simultaneously, we present a scatter plot of ground-truth vs. predicted scores for each image. Each point in the scatter plot represents one user-profile. In these plots, points closer to the diagonal (dotted line) indicate lower errors. Points above the diagonal indicate risk over-estimation and under the diagonal indicate risk under-estimation.

We observe from the qualitative results and w.r.t each row in Figure 11 (i) (First row) presents examples with correct high confidence attribute predictions according to the posterior probability. Here, both AP-PR and PR-CNN perform equally well. (ii) (Second row) presents examples where attribute predictions are noisy. In these, PR-CNN outperforms AP-PR. (iii) (Third row) Both AP-PR and PR-CNN are challenged by difficult images (low contrast, unnatural angles, low lighting, occlusion). However, we see that PR-CNN often performs slightly better than AP-PR in these cases. (iv) (Fourth row) presents examples where AP-PR with correct attribute predictions performs better than PR-CNN.

C.2. Precision-Recall Curves for User Profiles

Section 5.2 discussed Precision-Recall curves (Lines 756–769) evaluated over all profiles. These were obtained by treating the privacy risk-prediction as a binary classification problem, where images above a certain risk score (3+ and 4+ previously) is considered private per user profile.

In Figure 12, we present the Precision-Recall curves evaluated over groups of profiles and additional risk thresholds. To generate the curves in these figures, we first create four groups of profiles, with an equal number of profiles in each group. We refer to these groups as quartiles Q1-Q4. We then obtain the Precision-Recall curves for each of these quartiles.

We observe that PR-CNN displays better performance for high-risk images over all quartiles of the 30 user profiles and hence contributing to an overall better performance.

Additionally, we observe a similar pattern with the $L_1$-error metric (the absolute difference in scores), where PR-CNN (error = 0.67) incurs lower error scores for private images compared to AP-PR (error = 0.84). However, AP-PR (error = 0.34) performs better for safe images in comparison to PR-CNN (error = 0.58).

D. Additional Results for Humans vs. Machine

In Section 5.3 (Lines 806–843), we discussed the performance of our Privacy Risk Evaluation Methods when compared to the users themselves. The performance evaluation was primarily with Precision-Recall curves.

In this section, we discuss performance when evaluated using $L_1$ as a distance metric between the ground-truth privacy scores (user’s specified preferences) and the privacy risk estimation using three approaches (user’s visual risk
<table>
<thead>
<tr>
<th>Group</th>
<th>Attribute</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal Description</td>
<td>Gender</td>
<td>Subject’s gender is clearly visible using one or more gender-specific discriminative visual cues such as more than 50% body being visible, clothing, facial/head hair or colored nails.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eye Color</td>
<td>If eyes are visible and can be categorized as one of: brown, hazel, blue or green.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hair Color</td>
<td>Subject’s head hair color is visible</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fingerprint</td>
<td>Fingerprint is visible through either a close-up shot of one’s finger or an imprint on some surface.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signature</td>
<td>Complete signature is visible in an image, such as in a form or document.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Face (Complete)</td>
<td>A face is completely visible. Also includes photographs of faces on identity cards, documents or billboards.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Face (Partial)</td>
<td>Less than 70% of the face is visible or there is occlusion, such as when the subject is wearing sunglasses.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tattoo</td>
<td>Subject displays either a tattoo or body paint.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nudity (Partial)</td>
<td>Subject appears in undergarments</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nudity (Complete)</td>
<td>Human subject appears without clothing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Race</td>
<td>Any subject in the photograph can be categorized into one of Caucasian, Asian or Negroid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Skin) Color</td>
<td>One’s skin color can be categorized into one of White, Brown or Black.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Traditional Clothing</td>
<td>Subject appears in clothing which is indicative of a particular region or country e.g. dirndl, sari.</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: List of Privacy Attributes including their definitions and examples
<table>
<thead>
<tr>
<th>Group</th>
<th>Attribute</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Name</td>
<td>A recognizable full name which appears in the context of a form, document or a badge. Also includes if the name can be inferred from a signature.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name (First)</td>
<td>Only if the first name is visible on a form, document, badge or clothing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Name (Last)</td>
<td>Only if the last name is visible on a form, document, badge or clothing.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Place of Birth</td>
<td>Place of Birth is explicitly mentioned, such as in a form or in an identification document.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date of Birth</td>
<td>Date of Birth is explicitly mentioned in writing. Includes year, month or the day of birth.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nationality</td>
<td>A passport indicating country is clearly visible. Includes the case if a subject appears holding a country’s flag or wearing a uniform bearing the flag (such as a soldier or an international athlete).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Handwriting</td>
<td>Hand-written text on any surface.</td>
<td></td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td>A subject is wearing an engagement ring. Includes wedding photographs taken of the bride and groom.</td>
<td></td>
</tr>
<tr>
<td>Documents</td>
<td>National Ident.</td>
<td>Documents such as a Green Card or a European national identity card, not including passports.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Credit Card</td>
<td>Either the front or back of a credit card. Includes cases when the card is partially visible e.g. in someone’s hand or in a shredded form.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Passport</td>
<td>A photograph of any page in the passport or its front cover.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drivers License</td>
<td>Either front or back of a drivers license or a driving permit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Student ID</td>
<td>Front or back of a student identity card, with at least the name of a school, college or university clearly readable.</td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>Attribute</td>
<td>Description</td>
<td>Examples</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Mail</td>
<td>Contents of a mail or the envelope.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receipts</td>
<td>Purchase receipts indicating a financial transaction with an amount clearly visible, e.g. a restaurant receipt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tickets</td>
<td>A travel, movie or concert ticket which specifies travel location or an event.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health</td>
<td>Physical disability</td>
<td>Subject appears with a permanent physical disability e.g. an amputee or a person in a wheelchair.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medical Treatment</td>
<td>Subject appears either with an injury or indicates hospital admittance.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medical History</td>
<td>Photographs of medicine or medical prescriptions.</td>
<td></td>
</tr>
<tr>
<td>Employment</td>
<td>Occupation</td>
<td>Subject appears in a distinguishable occupation-specific uniform e.g. doctor, policemen, construction worker.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Work Occasion</td>
<td>Subject is photographed while giving a talk, presentation, attending a work-related or broad-casting event. Includes photographs of people in formal attire in an office.</td>
<td></td>
</tr>
<tr>
<td>Personal Life</td>
<td>Religion</td>
<td>Subject appears associated with a distinguishable religious symbol, religion-specific clothing or at a religious location.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sexual Orientation</td>
<td>Two subjects are photographed in an intimate setting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Culture</td>
<td>Subjects appear celebrating a traditional festival or attending an art or culture related activity e.g. concert, play.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hobbies</td>
<td>A non-professional related activity of a subject is visible e.g. playing a musical instrument, taking photographs.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sports</td>
<td>Subject appears taking part in an indoor or outdoor sports activity</td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>Attribute</td>
<td>Description</td>
<td>Examples</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------------------</td>
<td>-------------------------------------------------------------------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Personal Occasion</td>
<td>Photographs of people</td>
<td>Celebrating a personal occasion with friends or family members <em>e.g.</em> wedding, birthday.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of people</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Opinion</td>
<td>Subject appears</td>
<td>Associated with a placard or clothing indicating opinion on general issues <em>e.g.</em> wars, taxes,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with either</td>
<td>LGBT rights.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>clothing, placard or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in a crowd</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Political Opinion</td>
<td>Subject appears</td>
<td>With either clothing, placard or in a crowd at a political rally.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with either</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relationships</td>
<td>Personal Relationships</td>
<td>Photographs of people in a visually-identifiable personal relationship <em>e.g.</em> mother-son, husband-wife.</td>
<td></td>
</tr>
<tr>
<td>Social Circle</td>
<td>Subjects of the same</td>
<td>Age-group photographed in a casual setting <em>e.g.</em> friends at a party, walking together on a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>age-group</td>
<td>street.</td>
<td></td>
</tr>
<tr>
<td>Professional Circle</td>
<td>A group of people who</td>
<td>Share an occupation (<em>e.g.</em> a group of policemen) or who are dressed for a professional event</td>
<td></td>
</tr>
<tr>
<td></td>
<td>share an occupation</td>
<td>(<em>e.g.</em> a conference or meeting).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(<em>e.g.</em> a group of</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>policemen) or who are</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dressed for a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>professional event</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e.g. a conference or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>meeting).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competitors</td>
<td>A group of people taking</td>
<td>Part in team sports. Also includes the case when subjects belong to the same team.</td>
<td></td>
</tr>
<tr>
<td>Spectators</td>
<td>A group of people</td>
<td>Spectating an event such as a concert or play.</td>
<td></td>
</tr>
<tr>
<td>Similar view</td>
<td>A group of people</td>
<td>At a rally or a protest who share opinions on a general issue. Only includes the case when</td>
<td></td>
</tr>
<tr>
<td></td>
<td>at a rally or a</td>
<td>placards or clothing denoting a cause or rallying for a political party is visible.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>protest who share</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>opinions on a general</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>issue.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Only includes the case</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>when placards or clothing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>denoting a cause or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rallying for a political</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>party is visible.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>Education history</td>
<td>Photographs contain cues indicating subject’s education history, such as at a graduation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Photographs contain</td>
<td>ceremony, clothing indicating university or an academic or school certificate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cues indicating subject’s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>education history, such</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>as at a graduation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ceremony, clothing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>indicating university or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>an academic or school</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>certificate.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whereabouts</td>
<td>Visited Landmark</td>
<td>Photograph contains text indicating a business’ name, street sign or a well-known landmark.</td>
<td></td>
</tr>
<tr>
<td>Visited Location</td>
<td>Text indicating a</td>
<td>Complete address (<em>e.g.</em> restaurant receipt with the address of the restaurant) or a screen-shot</td>
<td></td>
</tr>
<tr>
<td>(Complete)</td>
<td>complete address (e.g.</td>
<td>of GPS-based location.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>restaurant receipt with</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>the address of the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>restaurant) or a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>screen-shot of GPS-based</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>location.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group</td>
<td>Attribute</td>
<td>Description</td>
<td>Examples</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Visited Location (Partial)</td>
<td>Text which partially indicates the subject’s location, such as street name, city or country where the photograph was taken.</td>
<td><img src="image1.png" alt="Image" /></td>
<td></td>
</tr>
<tr>
<td>Home address (Complete)</td>
<td>Photograph containing a complete non-commercial postal address.</td>
<td><img src="image2.png" alt="Image" /></td>
<td></td>
</tr>
<tr>
<td>Home address (Partial)</td>
<td>Photograph containing a partial non-commercial postal address.</td>
<td><img src="image3.png" alt="Image" /></td>
<td></td>
</tr>
<tr>
<td>Date/Time of Activity</td>
<td>Photograph contains information of date and/or time of subject’s location or activity such as a time-stamp watermark in an image, or a clock in the photograph.</td>
<td><img src="image4.png" alt="Image" /></td>
<td></td>
</tr>
<tr>
<td>Phone no.</td>
<td>A phone number that is visible in the photograph (either personal or commercial).</td>
<td><img src="image5.png" alt="Image" /></td>
<td></td>
</tr>
<tr>
<td>Internet Activity</td>
<td>Username</td>
<td>A screen shot of a website which mentions any username or internet handles.</td>
<td><img src="image6.png" alt="Image" /></td>
</tr>
<tr>
<td></td>
<td>Email address</td>
<td>Any complete valid email-address that appears in a photograph or a screen-shot.</td>
<td><img src="image7.png" alt="Image" /></td>
</tr>
<tr>
<td></td>
<td>Email content</td>
<td>Screenshots of emails including the subject of the email, or parts of the email body content.</td>
<td><img src="image8.png" alt="Image" /></td>
</tr>
<tr>
<td></td>
<td>Online conversations</td>
<td>Screenshots of online conversations, posts, tweets or internet activity by any user.</td>
<td><img src="image9.png" alt="Image" /></td>
</tr>
<tr>
<td>Legal</td>
<td>Legal involvement</td>
<td>Photographs indicating subject’s involvement with law-related activities e.g. someone being arrested, in a court hearing.</td>
<td><img src="image10.png" alt="Image" /></td>
</tr>
<tr>
<td>Automobile</td>
<td>Vehicle Ownership</td>
<td>Photograph of a person riding a motor vehicle.</td>
<td><img src="image11.png" alt="Image" /></td>
</tr>
<tr>
<td>License Plate (Complete)</td>
<td>A clearly visible license plate or registration number of any motor vehicle.</td>
<td><img src="image12.png" alt="Image" /></td>
<td></td>
</tr>
<tr>
<td>License Plate (Partial)</td>
<td>A partial license plate or registration number of any motor vehicle.</td>
<td><img src="image13.png" alt="Image" /></td>
<td></td>
</tr>
<tr>
<td>Privacy Attribute</td>
<td>True Positives</td>
<td>False Positives</td>
<td>False Negatives</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Credit Card</td>
<td><img src="image1" alt="Credit Card" /></td>
<td><img src="image2" alt="False Positives" /></td>
<td><img src="image3" alt="False Negatives" /></td>
</tr>
<tr>
<td>Ethnic Clothing</td>
<td><img src="image4" alt="Ethnic Clothing" /></td>
<td><img src="image5" alt="False Positives" /></td>
<td><img src="image6" alt="False Negatives" /></td>
</tr>
<tr>
<td>Full Name</td>
<td><img src="image7" alt="Full Name" /></td>
<td><img src="image8" alt="False Positives" /></td>
<td><img src="image9" alt="False Negatives" /></td>
</tr>
<tr>
<td>Hobbies</td>
<td><img src="image10" alt="Hobbies" /></td>
<td><img src="image11" alt="False Positives" /></td>
<td><img src="image12" alt="False Negatives" /></td>
</tr>
<tr>
<td>Passport</td>
<td><img src="image13" alt="Passport" /></td>
<td><img src="image14" alt="False Positives" /></td>
<td><img src="image15" alt="False Negatives" /></td>
</tr>
<tr>
<td>Sexual Orientation</td>
<td><img src="image16" alt="Sexual Orientation" /></td>
<td><img src="image17" alt="False Positives" /></td>
<td><img src="image18" alt="False Negatives" /></td>
</tr>
<tr>
<td>Medical History</td>
<td><img src="image19" alt="Medical History" /></td>
<td><img src="image20" alt="False Positives" /></td>
<td><img src="image21" alt="False Negatives" /></td>
</tr>
<tr>
<td>Drivers License</td>
<td><img src="image22" alt="Drivers License" /></td>
<td><img src="image23" alt="False Positives" /></td>
<td><img src="image24" alt="False Negatives" /></td>
</tr>
<tr>
<td>Handwriting</td>
<td><img src="image25" alt="Handwriting" /></td>
<td><img src="image26" alt="False Positives" /></td>
<td><img src="image27" alt="False Negatives" /></td>
</tr>
<tr>
<td>Occupation</td>
<td><img src="image28" alt="Occupation" /></td>
<td><img src="image29" alt="False Positives" /></td>
<td><img src="image30" alt="False Negatives" /></td>
</tr>
<tr>
<td>Personal Relationships</td>
<td><img src="image31" alt="Personal Relationships" /></td>
<td><img src="image32" alt="False Positives" /></td>
<td><img src="image33" alt="False Negatives" /></td>
</tr>
<tr>
<td>Username</td>
<td><img src="image34" alt="Username" /></td>
<td><img src="image35" alt="False Positives" /></td>
<td><img src="image36" alt="False Negatives" /></td>
</tr>
<tr>
<td>License Plate (Complete)</td>
<td><img src="image37" alt="License Plate (Complete)" /></td>
<td><img src="image38" alt="False Positives" /></td>
<td><img src="image39" alt="False Negatives" /></td>
</tr>
</tbody>
</table>

Figure 10: Additional Qualitative Results of our Privacy Attribute Prediction method
Figure 11: Qualitative results for Personalized Privacy Risk Prediction
Figure 12: Precision-Recall curves when visualized over groups of user profiles
assessment and our two proposed approaches — AP-PR and PR-CNN). The $L_1$ distance here measures the absolute difference in risk score (where risk scores are between 1–5). Figure 13 presents these errors per attribute.

We observe from these results: (i) On average (horizontal lines), the PR-CNN estimates privacy risks ($L_1$ error = 1.03) slightly better than the user's image-based judgment ($L_1$ error = 1.1) (ii) Users often misjudge the risk (right end of figure) from natural-looking images such as cars with visible license plates or family photographs depicting relationships. In these cases, PR-CNN is better at evaluating risks. (iii) Considering the attributes in which AP-PR incurs high errors (e.g., relationships, addresses, username, signature, credit card), we see that PR-CNN outperforms in all these cases bypassing incorrect attribute predictions.

![Figure 13: $L_1$ errors over attributes](image-url)