English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The role of local instabilities in fluid invasion into permeable media

MPS-Authors
/persons/resource/persons203899

Singh,  Kamaljit
Group Geometry of Fluid Interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons173646

Scholl,  Hagen
Group Geometry of Fluid Interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons121177

Brinkmann,  Martin
Group Theory of wet random assemblies, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons121410

Herminghaus,  Stephan
Group Granular matter and irreversibility, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

/persons/resource/persons121851

Seemann,  Ralf
Group Geometry of Fluid Interfaces, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Singh, K., Scholl, H., Brinkmann, M., Di Michiel, M., Scheel, M., Herminghaus, S., et al. (2017). The role of local instabilities in fluid invasion into permeable media. Scientific Reports, 7: 444. doi:10.1038/s41598-017-00191-y.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-DF09-1
Abstract
Wettability is an important factor which controls the displacement of immiscible fluids in permeable media, with far reaching implications for storage of CO2 in deep saline aquifers, fuel cells, oil recovery, and for the remediation of oil contaminated soils. Considering the paradigmatic case of random piles of spherical beads, fluid front morphologies emerging during slow immiscible displacement are investigated in real time by X-ray micro–tomography and quantitatively compared with model predictions. Controlled by the wettability of the bead matrix two distinct displacement patterns are found. A compact front morphology emerges if the invading fluid wets the beads while a fingered morphology is found for non–wetting invading fluids, causing the residual amount of defending fluid to differ by one order of magnitude. The corresponding crossover between these two regimes in terms of the advancing contact angle is governed by an interplay of wettability and pore geometry and can be predicted on the basis of a purely quasi–static consideration of local instabilities that control the progression of the invading interface.