Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Charge Transfer and Structural Anomaly in Stoichiometric Layered Perovskite Sr2Co0.5Ir0.5O4

MPG-Autoren
/persons/resource/persons126756

Mikhailova,  Daria
Daria Mikhailova, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126666

Hu,  Zhiwei
Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126717

Kuo,  Chang-Yang
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons134287

Mogare,  Kailash M.
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126507

Agrestini,  Stefano
Stefano Agrestini, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mikhailova, D., Hu, Z., Kuo, C.-Y., Oswald, S., Mogare, K. M., Agrestini, S., et al. (2017). Charge Transfer and Structural Anomaly in Stoichiometric Layered Perovskite Sr2Co0.5Ir0.5O4. European Journal of Inorganic Chemistry, 2017(3), 587-595. doi:10.1002/ejic.201600970.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-B34D-7
Zusammenfassung
A layered Sr2Co0.5Ir0.5O4 (space group I4/mmm) perovskite of the K2NiF4 structure type was synthesized as a single-phase sample. Neutron powder diffraction measurements revealed full site occupancy of oxygen atoms. The Co3+/Ir5+ valence states were evaluated by a combination of X-ray absorption and X-ray photoemission spectroscopy as well as by magnetization measurements, and thus the differences to the parent compounds Sr2CoO4 and Sr2IrO4 with similar structures were confirmed. Co-K edge EXAFS studies indicated a long average Co-O distance of 1.967 A suggestina high-spin state of the Co3+ ion in Sr2Co0.5Ir0.5O4. No long-range magnetic ordering down to 4 K was detected by neutron powder diffraction, probably hindered by the random distribution of Co and Ir cations in the Sr2Co0.5Ir0.5O4 structure. High-pressure synchrotron powder diffraction studies showed stability of the Sr2Co0.5Ir0.5O4 structure up to at least 27 GPa at room temperature. A maximum in the c/a ratio at 10 GPa together with an anomaly in the pressure dependence of the unit-cell volume could be a sign of a change in the spin state of the Co ions under pressure.