English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Gas-Phase Vibrational Spectroscopy of the Aluminum Oxide Anions (Al2O3)1-6AlO2-

MPS-Authors
/persons/resource/persons104332

Song,  Xiaowei
Molecular Physics, Fritz Haber Institute, Max Planck Society;
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig ;

/persons/resource/persons45968

Fagiani,  Matias Ruben
Molecular Physics, Fritz Haber Institute, Max Planck Society;
Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig ;

/persons/resource/persons21548

Gewinner,  Sandy
Molecular Physics, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22079

Schöllkopf,  Wieland
Molecular Physics, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Song_etal_ChemPhysChem.pdf
(Any fulltext), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Song, X., Fagiani, M. R., Gewinner, S., Schöllkopf, W., Asmis, K. R., Bischoff, F. A., et al. (2017). Gas-Phase Vibrational Spectroscopy of the Aluminum Oxide Anions (Al2O3)1-6AlO2-. ChemPhysChem, 18(8), 868-872. doi:10.1002/cphc.201700089.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-A8BF-6
Abstract
We use cryogenic ion trap vibrational spectroscopy in combination with density functional theory to probe, how the structural variability of aluminas manifest itself in the structures of the gas phase clusters (Al2O3)nAlO2- with n = 1-6. The infrared photodissociation spectra of the D2-tagged complexes, measured in the fingerprint spectral range (400-1200 cm-1), are rich in spectral features and start approaching the vibrational spectrum of amorphous alumina particles for n > 4. Aided by a genetic algorithm, we find a trend towards the formation of irregular structures for larger n, with the exception of n = 4, which exhibits a C3v ground state structure. Locating the global minima of the larger systems proves challenging.