English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

1,1,3,3-Tetratriflylpropene (TTP): A Strong, Allylic C–H Acid for Brønsted and Lewis Acid Catalysis

MPS-Authors
/persons/resource/persons191811

Höfler,  Denis
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59099

Wedemann,  Petra
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons132873

Leutzsch,  Markus
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons202068

Lingnau,  Julia
Service Department Farès (NMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58764

List,  Benjamin
Research Department List, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Höfler, D., van Gemmeren, M., Wedemann, P., Kaupmees, K., Leito, I., Leutzsch, M., et al. (2017). 1,1,3,3-Tetratriflylpropene (TTP): A Strong, Allylic C–H Acid for Brønsted and Lewis Acid Catalysis. Angewandte Chemie International Edition in English, 56(5), 1411-1415. doi:10.1002/anie.201609923.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-DBB0-5
Abstract
Tetratrifylpropene (TTP) has been developed as a highly acidic, allylic C–H acid for Brønsted and Lewis acid catalysis. It can readily be obtained in two steps and consistently shows exceptional catalytic activities for Mukaiyama aldol, Hosomi–Sakurai, and Friedel–Crafts acylation reactions. X-ray analyses of TTP and its salts confirm its designed, allylic structure, in which the negative charge is delocalized over four triflyl groups. NMR experiments, acidity measurements, and theoretical investigations provide further insights to rationalize the remarkable reactivity of TTP.