日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

State-resolved attosecond reversible and irreversible dynamics in strong optical fields

MPS-Authors
/persons/resource/persons194647

Chen,  Yi-Jen
International Max Planck Research School for Ultrafast Imaging & Structural Dynamics (IMPRS-UFAST), Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science, DESY, D-22607 Hamburg, Germany;
Department of Physics, University of Hamburg, D-20355 Hamburg, Germany;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Sabbar, M., Timmers, H., Chen, Y.-J., Pymer, A. K., Loh, Z.-H., Sayres, S. G., Pabst, S., Santra, R., & Leone, S. R. (2017). State-resolved attosecond reversible and irreversible dynamics in strong optical fields. Nature Physics, 13, 472-478. doi:10.1038/nphys4027.


引用: https://hdl.handle.net/11858/00-001M-0000-002D-38EC-7
要旨
Strong-field ionization (SFI) is a key process for accessing real-time quantum dynamics of electrons on the attosecond timescale. The theoretical foundation of SFI was pioneered in the 1960s, and later refined by various analytical models. While asymptotic ionization rates predicted by these models have been tested to be in reasonable agreement for a wide range of laser parameters, predictions for SFI on the sub-laser-cycle timescale are either beyond the scope of the models or show strong qualitative deviations from full quantum-mechanical simulations. Here, using the unprecedented state specificity of attosecond transient absorption spectroscopy, we follow the real-time SFI process of the two valence spin–orbit states of xenon. The results reveal that the irreversible tunnelling contribution is accompanied by a reversible electronic population that exhibits an observable spin–orbit-dependent phase delay. A detailed theoretical analysis attributes this observation to transient ground-state polarization, an unexpected facet of SFI that cannot be captured by existing analytical models that focus exclusively on the production of asymptotic electron/ion yields.