English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The link between Tibetan Plateau monsoon and Indian summer precipitation: a linear diagnostic perspective

MPS-Authors
/persons/resource/persons188579

Ge,  Fei
The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37148

Fraedrich,  Klaus F.
MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

10.1007_s00382-017-3585-1.pdf
(Publisher version), 10MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Ge, F., Sielmann, F., Zhu, X., Fraedrich, K. F., Zhi, X., Peng, T., et al. (2017). The link between Tibetan Plateau monsoon and Indian summer precipitation: a linear diagnostic perspective. Climate Dynamics, 49, 4201-4215. doi:10.1007/s00382-017-3585-1.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-68B0-5
Abstract
The thermal forcing of the Tibetan Plateau (TP) is analyzed to investigate the formation and variability of Tibetan Plateau Summer Monsoon (TPSM), which affects the climates of the surrounding regions, in particular the Indian summer monsoon precipitation. Dynamic composites and statistical analyses indicate that the Indian summer monsoon precipitation is less/greater than normal during the strong/weak TPSM. Strong (weak) TPSM is associated with an anomalous near surface cyclone (anticyclone) over the western part of the Tibetan Plateau, enhancing (reducing) the westerly flow along its southern flank, suppressing (favoring) the meridional flow of warm and moist air from the Indian ocean and thus cutting (providing) moisture supply for the northern part of India and its monsoonal rainfall. These results are complemented by a dynamic and thermodynamic analysis: (i) A linear thermal vorticity forcing primarily describes the influence of the asymmetric heating of TP generating an anomalous stationary wave flux. Composite analysis of anomalous stationary wave flux activity (after Plumb 1985) strongly indicate that non-orographic effects (diabatic heating and/or interaction with transient eddies) of the Tibetan plateau contribute to the generation of an anomalous cyclone (anti-cyclone) over the western TP. (ii) Anomalous TPSM generation shows that strong TPSM years are related to the positive surface sensible heating anomalies over the eastern TP favoring the strong diabatic heating in summer. While negative TPSM years are associated with the atmospheric circulation anomalies during the preceding spring, enhancing northerly dry-cold air intrusions into TP, which may weaken the condensational heat release in the middle and upper troposphere, leading to a weaker than normal summer monsoon over the TP in summer.