Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Polymer masks on semiconductors: a novel way to nanostructures

MPG-Autoren
/persons/resource/persons76135

Spatz,  Joachim P.
Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society;
Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Haupt, M., Miller, S., Bitzer, K., Thonke, K., Sauer, R., Spatz, J. P., et al. (2001). Polymer masks on semiconductors: a novel way to nanostructures. Physica Status Solidi B, 224(3), 867-870. doi:10.1002/(SICI)1521-3951(200104)224:3<867:AID-PSSB867>3.0.CO;2-Q.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0029-C95A-3
Zusammenfassung
We have successfully used self-assembling diblock copolymers on semiconductors as nanolithographic masks in dry etching processes. Quantum structures in the range of only a few nanometers have been fabricated, far beyond the limits of conventional optical lithography processes. In a first step, diblock-copolymers in solution are used to generate micelles. These micelles are loaded by a noble metal salt. After dipping of a semiconductor wafer into this solution, a monolayer of ordered micelles is generated over an area of up to 3 × 3 cm2. Exposure of the surface to a hydrogen plasma removes all the organic components and only the small metal clusters remain, each ≈15 nm in diameter and 50–130 nm apart. These clusters can be used as a direct mask for dry etching of semiconductor quantum wells to fabricate quantum dots. With the anisotropic etching of these structures in a reactive ion-beam chlorine plasma, it is possible to create cylinders in GaAs of up to 80 nm height. After annealing and overgrowing these structures by molecular beam epitaxy it should be possible to create quantum dots embedded in barrier material with higher energy gap and to detect photoluminescece light from these quantum structures at low temperatures.