
ar
X

iv
:1

60
4.

06
07

0v
1 

 [m
at

h.
C

O
]  

20
 A

pr
 2

01
6

On Induced Colourful Paths in Triangle-free Graphs

Jasine Babu1 Manu Basavaraju2 L. Sunil Chandran3 Mathew C. Francis4

Abstract

Given a graphG = (V, E) whose vertices have been properly coloured, we say that a path in G is colourful if no two
vertices in the path have the same colour. It is a corollary ofthe Gallai-Roy Theorem that every properly coloured
graph contains a colourful path onχ(G) vertices. It is interesting to think of what analogous result one could obtain
if one considers induced colourful paths instead of just colourful paths. We explore a conjecture that states that
every properly coloured triangle-free graphG contains an induced colourful path onχ(G) vertices. As proving this
conjecture in its fullest generality seems to be difficult, we study a special case of the conjecture. We show that the
conjecture is true when the girth ofG is equal toχ(G). Even this special case of the conjecture does not seem to have
an easy proof: our method involves a detailed analysis of a special kind of greedy colouring algorithm. This result
settles the conjecture for every properly coloured triangle-free graphG with girth at leastχ(G).
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1. Introduction

All graphs considered in this paper are simple, undirected and finite. For a graphG = (V, E), we denote the vertex
set ofG by V(G) and the edge set ofG by E(G). A functionc : V(G)→ {1, 2, . . . , k} is said to be aproper k-colouring
of G if for any edgeuv ∈ E(G), we havec(u) , c(v). A graph isproperly coloured, if it has an associated proper
k-colouringc specified (for somek). The minimum integerk for which a graphG has a properk-colouring is the
chromatic number of G, denoted byχ(G). A subgraphH of a properly coloured graphG is said to becolourful if no
two vertices ofH have the same colour. If a colourful subgraphH of G is also an induced subgraph, then we say that
H is aninduced colourful subgraph ofG.

It is a corollary of the classic Gallai-Roy Theorem [3] that every (not necessarily optimally) properly coloured
graphG has a colourful path onχ(G) vertices (an alternative proof for this is given in Theorem4). We are interested
in the question of when one can find colourful paths that are also induced in a given properly coloured graph. Note
that the colourful path onχ(G) vertices that should exist in any properly coloured graphG may not always be an
induced path. In fact, whenG is a complete graph, there is no induced path on more than two vertices in the graph.
The following hitherto unpublished conjecture is due to N. R. Aravind.

Conjecture 1 ([2]). Let G be a triangle-free graph that is properly coloured. Then there is an induced colourful path
onχ(G) vertices inG.

Surprisingly, despite being known to many researchers for well over two years, the conjecture has remained open
even for the special case whenχ(G) = 4. Note that Conjecture1 is readily seen to be true for any triangle-free graph
G with χ(G) = 3, because the colourful path guaranteed to exist inG by the Gallai-Roy Theorem is also an induced
path inG. In this paper, we first prove Conjecture1 for the case whenχ(G) = 4. We then extend this proof to show
that the conjecture holds for any triangle-free graphG with g(G) ≥ χ(G), whereg(G) is thegirth of G, or the length
of the smallest cycle inG.

A necessary condition for Conjecture1 to hold is the presence of an induced path onχ(G) vertices in any triangle
free graphG. Indeed something stronger is known to be true: each vertex in a triangle-free graphG is the starting
point of an induced path onχ(G) vertices [4]. There have been several investigations on variants of theGallai-Roy
Theorem [1, 7]. Every connected graphG other thanC7 admits a properχ(G)-colouring such that every vertex of
G is the beginning of a (not necessarily induced) colourful path onχ(G) − 1 vertices [1]. Concerning induced trees,
Gyárfás conjectured that there exists an integer-valuedfunction f defined on the finite trees with the property that
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every triangle-free graphG with χ(G) = f (T ) containsT as an induced subgraph. This was proven true for trees
of radius two by Gyárfás, Szemerédi, and Tuza [5]. A stronger version of the Gallai-Roy Theorem that guarantees
an induced directed path onχ(G) vertices in any directed graphG would have easily implied Conjecture1. Clearly,
such a theorem cannot be true for every directed graph. But Kierstead and Trotter [6] show that no such result can
be obtained even if the underlying undirected graph ofG is triangle-free. They show that for every natural numberk,
there exists a digraphG such that its underlying undirected graph is triangle-freeand has chromatic numberk, butG
has no induced directed path on 4 vertices.

2. Preliminaries

Notation used in this paper is the standard notation used in graph theory (see e.g. [3]). We shall now describe a
special greedy colouring procedure for an already colouredgraph that will later help us in proving our main result.

The refined greedy algorithm. Given a properly coloured graphG with the colouringβ, we will construct a new
proper colouringα : V(G) → N

>0 of G, using the algorithm given below. Letb1 < b2 < · · · < bt be the colours used
by β.

For every vertexv ∈ V(G), setα(v)← 0
for i from 1 tot do

for vertexv with β(v) = bi andα(v) = 0 do
Colourv with the least positive integer not present in its
neighbourhood, i.e., setα(v)← min(N>0 \ {α(u) : u ∈ N(v)}).

Definition 2 (Decreasing path). A pathu1u2 . . . ul in G is said to be a “decreasing path” if for 2≤ i ≤ l, α(ui) < α(ui−1)
andβ(ui) < β(ui−1).

Lemma 3. Let v ∈ V(G) and X ⊆ {1, 2, . . . , α(v) − 1}. Then there is a decreasing path vu|X |u|X |−1 . . . u1 in G such that
for 1 ≤ i ≤ |X|, α(ui) ∈ X.

This lemma directly shows that there is a colourful path onχ(G) vertices in every properly coloured graphG
(without using the Gallai-Roy Theorem).

Theorem 4. If G is any graph whose vertices are properly coloured, then there is a colourful path on χ(G) vertices
in G.

Proof. Let β denote the proper colouring ofG. Run the refined greedy algorithm onG to generate the colouringα.
Clearly, the algorithm will use at leastχ(G) colours as the colouringα generated by the algorithm is also a proper
colouring ofG. Let v be any vertex inG with α(v) = χ(G). Now consider the setX = {1, 2, . . . , χ(G) − 1}. By
Lemma3, there is a path onχ(G) vertices starting atv on which the colours in the colouringβ are strictly decreasing.
This path is a colourful path onχ(G) vertices inG.

Corollary 5. Any properly coloured graph G with g(G) > χ(G) has an induced colourful path on χ(G) vertices.

Proof. If g(G) > χ(G), then the colourful path given by Theorem4 is an induced path inG.

This implies that the conjecture is true for all triangle-free graphs with chromatic number at most 3. It also implies
that in order to prove Conjecture1, one only has to consider graphsG with g(G) ≤ χ(G). The main result of this paper
is that Conjecture1 holds true for all triangle-free graphsG with g(G) = χ(G).

3. Induced colourful paths in graphs with girth equal to chromatic number

In this section, we shall prove our main result, given by the theorem below.

Theorem 6. Let G be a graph with g(G) = χ(G) = k, where k ≥ 4, and whose vertices have been properly coloured.
Then there exists an induced colourful path on k vertices in G.

2



Note that we can assume thatG is connected, because if the theorem holds for connected graphs, then it will hold
for the connected component ofG with chromatic number equal tok and hence also forG. Letβ : V(G)→ {1, 2, . . . , t}
denote the proper colouring ofG that is given.

A k-cycle inG in which no colour repeats is said to be acolourful k-cycle, sometimes shortened to just “colourful
cycle”. Notice that every colourful cycle inG is also an induced cycle asg(G) = k. From here onwards, we shorten
“colourful path onk vertices” to just “colourful path”.

Suppose that there is no induced colourful path onk vertices inG.

Observation 7. Since g(G) = k, if y1y2 . . . yk is a colourful path on k vertices in G, then the edge y1yk ∈ E(G). Thus,
y1y2 . . . yky1 is a colourful k-cycle in G.

Let α be a proper colouring ofG generated by running the refined greedy algorithm onG. We shall refer to the
colours of the colouringα as “labels”. From here onwards, we shall reserve the word “colour” to refer to a colour
in the colouringβ. As before, whenever we say that a path or a cycle is “colourful”, we are actually saying that it is
colourful in the colouringβ.

We say that a path with no repeating colours is an “almost decreasing path” if the subpath induced by the vertices
other than the starting vertex is a decreasing path. Note that any decreasing path is also an almost decreasing path.

The proof of Theorem6 is split into two cases: whenk = 4 and whenk > 4.

3.1. Case when k= 4

In this case, we haveχ(G) = g(G) = 4.
As α is also a proper colouring ofG, we know that there exists a vertexv in G with label 4. By Lemma3, there

exists a decreasing pathv4v3v2v1 wherev4 = v and for 1≤ i ≤ 3, we haveβ(vi) < β(vi+1) andα(vi) = i. Again by
Lemma3, we have a pathvv′2v′1 in which we haveβ(v′1) < β(v′2) < β(v), α(v′2) = 2 andα(v′1) = 1. Note thatv′2 , v2

andv′1 , v1 (as otherwisevv′2v1v would be a triangle inG). This means that the vertices in{v4, v3, v2, v1, v′2, v
′
1} are all

pairwise distinct. Letβ(vi) = bi for eachi, where 1≤ i ≤ 4. We shall call the coloursb1, b2, b3, b4 “primary colours”.
Clearly, asv4v3v2v1 is a decreasing and hence colourful path, by Observation7, we havev1v4 ∈ E(G).

Claim 8. β(v′2) = b2 and β(v′1) = b1.

Proof. Suppose thatβ(v′2) , b2. Then we have that either the pathv′2v4v3v2 or the pathv′2v4v1v2 is colourful, which
implies thatv′2v2 ∈ E(G), a contradiction sinceα(v′2) = α(v2). Therefore we haveβ(v′2) = b2. Similarly if β(v′1) , b1,
then the pathv′1v′2v4v1 is colourful, which implies thatv′1v1 ∈ E(G), a contradiction sinceα(v′1) = α(v1). Thus we have
β(v′1) = b1.

Now notice that the pathv′1v′2v4v3 is colourful and hence we have thatv′1v3 ∈ E(G). We call the vertices in the set
{v4, v3, v2, v1, v′2, v

′
1} “forced vertices”. Any other vertex in the graph will be called an “optional vertex”. The following

observations about forced vertices are easy to verify.

Observation 9. For any forced vertex w, we have β(w) = bα(w).

Observation 10. Every forced vertex is in a colourful cycle containing only forced vertices and which also contains
the vertices v3 and v4.

Observation 11. For any forced vertex w and set of primary colours X ⊆ {bi | bi < β(w)}, there exists a decreasing
path starting from w having only forced vertices and whose vertices other than w have exactly the colours in X.

Observation 12. For w ∈ {v3, v4} and for any set X of primary colours, there exists an almost decreasing path
containing only forced vertices and whose vertices other than w see exactly the colours in X \ {β(w)}.

For a vertexw, we defineρ(w) = v3 if β(w) = b4 andρ(w) = v4 otherwise.

Lemma 13. If an optional vertex is adjacent to a forced vertex, then it is adjacent to at least two forced vertices.
Moreover, there is a colourful cycle containing the optional vertex in which every other vertex is a forced vertex.
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Proof. Let w be an optional vertex that is adjacent to a forced vertexu. From Observation10, there is a colourful
cycleC that containsu andρ(w). Let P be a subpath ofC with endverticesρ(w) andu which does not contain the
colourβ(w) (note that ifρ(w) = u, thenP consists of just the single vertexu = ρ(w)). From Observation12, there
exists an almost decreasing pathP′ from ρ(w) whose vertices other thanρ(w) see 4− |V(wu ∪ P)| primary colours not
present in the pathwu ∪ P. Let x be the endpoint of this path (note thatP′ can be the single vertexx = ρ(w) in case
the pathwu ∪ P already contains 4 vertices). Clearly,wu ∪ P ∪ P′ is a colourful path and hencewx ∈ E(G). As it can
be easily seen thatx is a forced vertex that is different fromu, we now have at least two forced vertices inN(w). Also,
wu ∪ P ∪ P′ ∪ xw is a colourful cycle with the required properties.

Lemma 14. All optional vertices are adjacent to a forced vertex.

Proof. Consider the set of all optional vertices that have no forcedvertices as neighbours. Letw be a vertex in this set
that is closest to a forced vertex. AsG is connected,w has a neighbourw′ such thatN(w′) contains a forced vertex.
From Lemma13, there is a colourful cycleC containingw′ in which all other vertices are forced vertices. Letz be the
vertex inC which has highest colour inC other thanβ(w) andβ(w′). From the observation in the previous sentence,
we know thatz is a forced vertex. LetP be a subpath ofC with endverticesw′ andz that does not containβ(w). By
Observation11, from z, there is a decreasing pathP′ whose vertices other thanz see 4− |V(ww′ ∪ P)| primary colours
not seen on the pathww′ ∪ P. Let x be the endpoint ofP′. As P′ is a decreasing path starting from the forced vertexz,
we have thatx is a forced vertex. Now,ww′ ∪ P ∪ P′ is a colourful path and hencewx ∈ E(G). But nowx is a forced
vertex inN(w), contradicting the assumption thatw had no forced vertices in its neighbourhood.

Let S 1 denote the set of optional vertices adjacent to at least one of the forced vertices{v4, v2, v′1} and letS 2 denote
the set of optional vertices adjacent to at least one of the forced vertices{v3, v1, v′2}.

Lemma 15. (i) S 1 and S 2 are disjoint, and

(ii) S 1 and S 2 are both independent sets.

Proof. First let us show thatS 1 andS 2 are disjoint. Suppose that there is a vertexw ∈ S 1 ∩ S 2. We know that there
are two forced verticesx andy in N(w) such thatx ∈ {v4, v2, v′1} andy ∈ {v3, v1, v′2}. As G is triangle-free, we only
have the two possibilities (x = v′1, y = v1) or (x = v2, y = v′2). Suppose thatx = v′1 andy = v1. If β(w) , b4, then as
at least one of the pathswv′1v′2v4 or wv′1v3v4 is a colourful path, we havewv4 ∈ E(G). But this is a contradiction as
wv4v1 is a triangle inG. Therefore, we can conclude thatβ(w) = b4. But now, the pathwv1v2v3 is colourful, implying
thatwv3 ∈ E(G). This is a contradiction aswv3v′1 is now a triangle inG. The other case whenx = v2 andy = v′2 is
symmetric. This proves(i).

This tells us that for each vertexw ∈ S 1, the forced vertices inN(w) all lie in {v4, v2, v′1} and for each vertex
w′ ∈ S 2, the forced vertices inN(w′) all lie in {v3, v1, v′2}. Since we know from Lemma13 and Lemma14 that each
vertex inS 1 ∪ S 2 has at least two forced vertices in their neighbourhood, we can conclude that each vertex inS 1 has
at least two neighbours from{v4, v2, v′1} and that each vertex inS 2 has at least two neighbours from{v3, v1, v′2}. This
means that for any twow,w′ ∈ S 1, there is at least one vertex in{v4, v2, v′1} that is a neighbour of bothw andw′. As
G is triangle-free, we can conclude thatww′ < E(G). For the same reason, for any two verticesw,w′ ∈ S 2, we have
ww′ < E(G). This proves(ii).

From Lemma15(i), we know that there are no edges betweenS 1 and{v3, v1, v′2}. Similarly, there are no edges
betweenS 2 and {v4, v2, v′1}. Now, by Lemma15(ii), we have thatS 1 ∪ {v3, v1, v′2} is an independent set andS 2 ∪

{v4, v2, v′1} is an independent set. Since from Lemma14, we know thatV(G) = S 1 ∪ S 2 ∪ {v4, v3, v2, v1, v′2, v
′
1}, this

tells us thatG is bipartite, which contradicts the assumption thatχ(G) = 4. Therefore, there can be no properly
coloured graphG such thatg(G) = χ(G) = 4 with no induced colourful path on 4 vertices. This completes the proof
of Theorem6 for the casek = 4.

3.2. Case when k> 4

The proof for this case also follows the same general patternas the casek = 4, but more technicalities are involved.

Lemma 16. Let y1y2 . . . yky1 be a colourful k-cycle. Let z ∈ N(yi) \ {yi−1, yi+1} for some i ∈ {1, 2, . . . , k}. Then
β(z) ∈ {β(y1), . . . , β(yk)} \ {β(yi−1), β(yi), β(yi+1)}. (Here we assume that yi+1 = y1 when i = k and that yi−1 = yk when
i = 1.)
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Proof. Clearly, z < {y1, y2, . . . , yk} as every colourful cycle is an induced cycle. Supposeβ(z) < {β(y1), . . . , β(yk)} \
{β(yi−1), β(yi), β(yi+1)}. Clearly,β(z) , β(yi). Suppose thatβ(z) , β(yi+1). Then observe thatzyiyi+1 . . . yky1 . . . yi−2

is a colourful path onk vertices and hencezyi−2 ∈ E(G). This implies thatzyiyi−1yi−2z is a 4-cycle inG, which
is a contradiction. Ifβ(z) = β(yi+1), then we haveβ(z) , β(yi−1). In this case, the pathzyiyi−1 . . . y1yk . . . yi+2 is a
colourful path and the same reasoning as above tells us that there is a 4-cyclezyiyi+1yi+2z in G, which is again a
contradiction.

Corollary 17. Let y1y2 . . . yky1 be a colourful k-cycle. Let z ∈ N(yi) for some i ∈ {1, 2, . . . , k}. Then β(z) ∈
{β(y1), . . . , β(yk)}.

The vertexv: Fix v to be a vertex which has the largest label. Sinceα is also a proper vertex colouring ofG, it should
use at leastk labels. In other words,α(v) ≥ k.

Primary cycle: By applying Lemma3 to v and the set of labels{1, 2, . . . , k − 1}, we can conclude that there exists a
decreasing pathvkvk−1 . . . v1 wherevk = v and such thatα(vi) = i for all i < k andβ(vi) < β(vi+1) for all 1 ≤ i ≤ k − 1.
Since this path is colourful, by Observation7, vvk−1vk−2 . . . v1v is a colourful cycle, which we shall call the “primary
cycle”. For 1≤ i ≤ k, we shall denote bybi the colourβ(vi). The set of colours{bk, bk−1, . . . , b1} shall be called the
set of “primary colours”.

Lemma 18. α(v) = k. Hence, for all i, α(vi) = i.

Proof. Suppose for the sake of contradiction thatα(v) > k. By Lemma3, there exists a decreasing pathyk+1yk . . . y1

whereyk+1 = v and for 1≤ i ≤ k, we haveα(yi) = i andβ(yi) < β(yi+1). As the pathsyk+1yk . . . y2 andykyk−1 . . . y1 are
both colourful, it must be the case thatyk+1y2, yky1 ∈ E(G). But then,yk+1y2y1ykyk+1 is a cycle on four vertices inG,
which is a contradiction.

Forced and optional vertices:A vertexu ∈ V(G) is said to be a “forced vertex” if there is a decreasing path from v
to u. Any vertex ofG that is not forced is said to be an “optional vertex”.

Lemma 19. For each i ∈ {1, 2, . . . , k − 1} there is exactly one vertex ui in N(v) with label i. Moreover, β(ui) = bi and
there is a colourful cycle Ci containing ui and v that contains only forced vertices.

Proof. Observe that because the refined greedy algorithm assignedα(v) to bek, it must be the case that for every
i ∈ {1, 2, . . . , k − 1}, there exists a vertex, which we shall callui, in N(v) such thatα(ui) = i andβ(ui) < bk. We shall
chooseuk−1 to bevk−1. Becauseui is adjacent tov which is on the primary cycle, by Corollary17, we know thatβ(ui)
is a primary colour.

We claim thatβ(ui) = bi and that there is a colourful cycle containingv andui that contains only forced vertices.
We shall use backward induction oni prove this. Consider the base case wheni = k − 1. Sinceuk−1 = vk−1, we
know thatβ(uk−1) = bk−1 and that there is a colourful cycle (the primary cycle) that containsuk−1 andv and also
contains only forced vertices. Thus the claim is true for thebase case. Let us assume that the claim has been proved
for uk−1, uk−2, . . . , ui+1. If β(ui) = b j > bi, thenb j ∈ {bi+1, bi+2, . . . , bk−1}. By the induction hypothesis, we know that
the vertexu j ∈ N(v) hasβ(u j) = b j and that there is a colourful cycleC j containingu j andv. Note thatu j , ui (as
α(ui) , α(u j)), but β(u j) = β(ui) = b j. Therefore, asC j containsu j and is a colourful cycle, it cannot containui.
Sinceui is adjacent tov which is onC j, andβ(ui) = b j, we now have a contradiction to Lemma16(note thatu jv is an
edge ofC j as every colourful cycle is a chordless cycle). So it has to bethe case thatβ(ui) ≤ bi. By Lemma3, there
exists a pathyiyi−1yi−2 . . . y1, whereyi = ui, such that for 1≤ j ≤ i − 1, α(y j) = j andβ(y j) < β(y j+1). Notice that
y1y2 . . . yivkvk−1 . . . vi+1 is a colourful path and therefore by Observation7, Ci = y1y2 . . . yivkvk−1 . . . vi+1y1 is a colourful
cycle containing bothui andv. Sincevi is adjacent tovi+1 which is onCi, by Corollary17, we know that there is some
vertexz on Ci such thatβ(z) = bi. Clearly,z ∈ {yi, yi−1, . . . , y1}. If z ∈ {yi−1, . . . , y1}, thenβ(yi) > β(z) = bi, which
is a contradiction to our earlier observation thatβ(ui) ≤ bi (recall thatui = yi). Therefore,z = yi, which implies that
β(ui) = bi. Notice that eachy j ∈ {yi, yi−1, . . . , y1}, because of the decreasing pathvyiyi−1 . . . y j, is a forced vertex. Thus,
Ci is a colourful cycle containingui andv that contains only forced vertices. This shows that for anyi ∈ {1, 2, . . . , k−1},
β(ui) = bi and there is a colourful cycle containingv andui that contains only forced vertices.

We shall now show thatui is the only vertex inN(v) which has the labeli. Suppose that there is a vertexu ∈
N(v) such thatα(u) = i andu , ui. Sinceu is adjacent to a colourful cycle containing only primary colours (the
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primary cycle), we can conclude from Corollary17 that β(u) is a primary colour. Therefore,β(u) = b j for some
j ∈ {1, 2, . . . , k − 1}. From what we observed above,β(u j) = b j and there exists a colourful cycleC j containing the
verticesv andu j. Note thatu j , u since if j , i, thenu j andu have different labels and ifj = i, we know thatu j , u
(as we have assumed thatui , u). Henceu is not inC j (asC j already has a vertexu j with β(u j) = b j) but is adjacent
to it. But nowC j andu contradict Lemma16asu jv is an edge ofC j. Therefore,u cannot exist.

Corollary 20. Let C be any colourful cycle containing v. Then C contains only primary colours.

Proof. Notice that from Lemma19, we know that for every primary colourb j ∈ {b1, b2, . . . , bk−1}, there is a vertexu j

with β(u j) = b j that is adjacent tov. Becausev is in C, we can apply Corollary17 to C andu j to conclude thatb j is
present inC. This means that every primary colour appears on at least onevertex ofC. SinceC was ak-cycle, this
means thatC contains only primary colours.

Lemma 21. If u ∈ V(G) is a forced vertex such that α(u) = i, then β(u) = bi. Moreover, if P is any decreasing path
from v to u, then there is a colourful cycle which has P as a subpath and contains only forced vertices and primary
colours.

Proof. Consider a forced vertexu. We shall prove the statement of the lemma foru by backward induction onα(u).
The statement is true forα(u) ∈ {k, k − 1} as there is only one forced vertex each with labelsk andk − 1—which arev
andvk−1 respectively (recall that from Lemma19, uk−1 = vk−1 is the only vertex inN(v) with labelk − 1). Also, note
that they are both in a colourful cycle (the primary cycle) that satisfies the required conditions. Let us assume that the
statement of the lemma has been proved forα(u) ∈ {k, k − 1, . . . , i + 1}. Let us look at the case whenα(u) = i. Let z
be the predecessor ofu in the pathP and letPz be the subpath ofP that starts atv and ends atz. Letα(z) = j. By the
induction hypothesis,β(z) = b j andz is in a colourful cycleC that contains only primary colours. By Corollary17,
we can infer thatβ(u) is a primary colour. SinceP was a decreasing path,β(u) ∈ {b1, b2, . . . , b j−1}. If β(u) = bl with
b j > bl > bi, then notice that there already exists a neighboury of z with α(y) = l andβ(y) < β(z), because the refined
greedy algorithm setα(z) = j. Note thatPz∪zy is a decreasing path fromv to y, which implies thaty is a forced vertex.
Clearly,u , y asα(u) , α(y). Because of our induction hypothesis,β(y) = bl and there is a colourful cycle containing
the pathPz∪zy as a subpath. Asβ(u) = β(y), u is outside this cycle but is a neighbour ofz. This contradicts Lemma16.
Therefore,β(u) ≤ bi. Consider the decreasing pathyiyi−1 . . . y1 whereyi = u, and fors ∈ {1, 2, . . . , i−1}, α(ys) = s and
β(ys) < β(ys+1) which exists by Lemma3. Again by Lemma3, there exists a decreasing pathQ starting fromv whose
vertices other thanv have exactly the labels in{i+ 1, i+ 2, . . . , k} that are not seen onPz. By the induction hypothesis,
we can now see that every colour in{bi+1, bi+2, . . . , bk} occurs exactly once in the pathQ ∪ Pz. Sinceyiyi−1 . . . y1 is a
decreasing path in which every vertex has colour at mostbi, we can conclude that the pathP′ = Q∪ Pz ∪ zyiyi−1 . . . y1

is a colourful path. By Observation7, the graph induced byV(P′) is a colourful cycle containingv, which we shall call
C′. By Corollary20, we know thatC′ contains only primary colours. Now, ifβ(u) < bi, then becauseuyi−1 . . . y1 was a
decreasing path, it should mean thatβ(y1) < b1, which is a contradiction. Thus,β(u) = bi andC′ is a cycle containing
P as a subpath and which contains only forced vertices and primary colours (note that eachys, for 1 ≤ s ≤ k − 1, is a
forced vertex as there is the decreasing pathPz ∪ zyiyi−1 . . . ys from v to ys).

Lemma 22. If P1 and P2 are two decreasing paths (P1 , P2) that start from a forced vertex u and meet at a vertex z,
then

(i) β(z) = b1 and α(z) = 1

(ii) u = v, and

(iii) P1 ∪ P2 is a colourful cycle.

Proof. Sinceu is a forced vertex there exists a decreasing pathP from v to u.
We shall first show that the pathsP1 andP2 cannot see exactly the same set of colours. Suppose for the sake of

contradiction that they do. As the pathsP1 andP2 are different, there is a vertex in one of these paths that is not in
the other. Let us assume without loss of generality that there is a vertex in the pathP2 that is not present inP1. We
denote byx′ the first vertex (when walking fromu) on P2 that is not present inP1. Let x be the predecessor ofx′ on
P2. Clearly,x is also inP1. Let x′′ denote the successor ofx on P1. As P1 andP2 are both decreasing paths with the
same set of colours, it must be the case thatβ(x′) = β(x′′). From Lemma21, we know that there is a colourful cycle
that containsP ∪ P1 as a subpath. Clearly, this colourful cycle containsx′′ and asβ(x′) = β(x′′), this cycle does not
containx′. But now this colourful cycle andx′ contradict Lemma16.
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Let α(z) = i. By Lemma21, we haveβ(z) = bi. Let Y be the decreasing pathyiyi−1 . . . y1 (guaranteed to exist by
Lemma3) whereyi = z, and fors ∈ {1, 2, . . . , i − 1, i}, α(ys) = s andβ(ys) = bs (by Lemma21; note that eachys is a
forced vertex because of the decreasing pathP∪P1∪yiyi−1 . . . ys from v to it). Again by Lemma3, for j ∈ {1, 2}, there
exists a decreasing pathQ j starting fromv whose vertices other thanv have exactly the labels in{i+1, i+2, . . . , k} that
are not seen onP ∪ P j. Note that all the vertices inP, P j, Q j andY are forced vertices and therefore by Lemma21,
they will all have primary colours. Furthermore, the colours on the pathQ j are exactly the primary colours greater
thanbi that are not seen on the path (P ∪ P j) − v and the pathY will contain all the primary colours less than or equal
to bi. Let w j denote the endpoint ofQ j that is notv. SinceP ∪ P j ∪ Y ∪ Q j is a colourful path, we havew jy1 ∈ E(G)
for j ∈ {1, 2}. Observe thatP1 andP2 are two paths such that in at least one of them, we have a vertexthat is not
present in the other. Since these paths also have the same endpoints, it is clear that there is a cycle inG using only
edges inE(P1) ∪ E(P2). Note that asP1 andP2 do not see exactly the same set of colours, the pathsQ1 ∪ w1y1 and
Q2 ∪ w2y1 are different. Now, following the same reasoning as above, one can see that there is at least one cycle inG
whose edges are fromE(Q1 ∪ w1y1) ∪ E(Q2 ∪ w2y1). Since girth ofG is k, we now have the following inequalities.

||P1|| + ||P2|| ≥ k

||Q1|| + ||Q2|| + 2 ≥ k

As P ∪ P j ∪ Y ∪ Q j ∪ w jy1 is a colourful cycle forj ∈ {1, 2}, we have the following equalities.

||P|| + ||P1|| + ||Q1|| + ||Y || + 1 = k

||P|| + ||P2|| + ||Q2|| + ||Y || + 1 = k

Summing the first two inequalities, we get,

||P1|| + ||P2|| + ||Q1|| + ||Q2|| + 2 ≥ 2k

and by adding the third and fourth, we get,

2||P|| + ||P1|| + ||P2|| + ||Q1|| + ||Q2|| + 2||Y || + 2 = 2k.

Combining the previous two equations, we have,

2||P|| + 2||Y || ≤ 0

which implies that||Y || = 0 and||P|| = 0. Therefore, we haveα(z) = 1 (and hence,β(z) = b1) and alsou = v. This
proves(i) and(ii).

This means thatY contains just the vertexz and thatP1 andP2 are both paths that start atv and end atz. Now, by
our earlier observation,z is in a colourful cycleC1 = P1∪Q1∪w1z and also in a colourful cycleC2 = P2∪Q2∪w2z.
There exists a vertexz′ ∈ C1 with β(z′) = b2 and a vertexz′′ in C2 such thatβ(z′′) = b2. Because each ofC1 andC2 is
the union of two decreasing paths fromv, one can conclude thatz′ is a neighbour ofz in C1 andz′′ is a neighbour ofz
in C2. Applying Lemma16to either one of the cyclesC1 or C2, it can be seen that there can only be one neighbour of
z colouredb2, and therefore,z′ = z′′. Thus, bothC1 andC2 contain the vertexz′. Let R j, for j ∈ {1, 2}, be the subpath
of C j with v andz′ as endvertices that does not containz. Clearly,R j is a decreasing path. Therefore,R1 andR2 are
two decreasing paths that start atv and meet atz′. If R1 , R2, then sinceβ(z′) = b2, we have a contradiction to(i).
Therefore, it must be the case thatR1 = R2, which implies that one ofP1 − z = P2 − z, Q1 = Q2, P1 − z = Q2 or
P2 − z = Q1 is true. SinceP1 , P2, we know thatP1 − z , P2 − z and becauseP1 andP2 do not contain the same set
of colours, we also haveQ1 , Q2. Therefore, we can conclude that eitherP1 − z = Q2 or P2 − z = Q1. But in either
case, we have that the colours on the pathP1 − {v, z} are exactly all the primary colours that are absent inP2. This can
only mean thatP1 ∪ P2 is a colourful cycle. This proves(iii).

Corollary 23. The graph induced by all the forced vertices other than those coloured b1 is a tree.
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Proof. Suppose for the sake of contradiction that there is a cycle containing only forced vertices with colours other
thanb1. Letu be the vertex in the cycle with the least colour in the colouringβ and letu′ andu′′ be its two neighbours
on the cycle. Sinceu′ andu′′ are both forced vertices there are decreasing pathsP′ andP′′ that start atv and end atu′

andu′′ respectively. LetP1 be the decreasing path obtained by addingu to P′ andP2 be the decreasing path obtained
by addingu to P′′. SinceP′ , P′′, we clearly haveP1 , P2. Thus,P1 andP2 are two decreasing paths starting atv
and meeting atu and becauseβ(u) , b1, we have a contradiction to Lemma22(i).

Given any vertexw, we defineρ(w) = vk−1 if β(w) = bk andρ(w) = vk otherwise.
Let X ⊆ {b1, b2, . . . , bk} be any set of primary colours. LetL = {i | bi ∈ X}. From Lemma3, we know that there

is a decreasing path starting fromvk consisting only of forced vertices and which sees exactly the labels inL ∪ {k}.
Applying Lemma21 to the vertices of this path, we have that this path sees exactly the colours inX ∪ {bk}. Thus for
any set of coloursX ⊆ {b1, b2, . . . , bk}, there exists a decreasing path starting fromvk, made up of forced vertices and
which sees exactly the colours inX ∪ {bk}. Note that ifbk < X, we can apply the same argument tovk−1 andX and
conclude that there is a decreasing path starting atvk−1 consisting only of forced vertices and which sees exactly the
colours inX∪{bk−1}. Suppose thatbk ∈ X. Then letX′ = X \ {bk−1}. From our above observation, there is a decreasing
path starting fromvk, consisting of only forced vertices and which sees exactly the colours inX′. This path, together
with the edgevk−1vk gives us an almost decreasing path starting fromvk−1 that consists only of forced vertices and
which sees exactly the colours inX ∪ {bk−1}. Thus, for any set of primary coloursX, we have almost decreasing paths
starting from bothvk andvk−1 consisting of only forced vertices and which see exactly thecolours inX ∪ {bk} and
X ∪ {bk−1} respectively. This gives us the following observation.

Observation 24. For any vertex w, and for any set of colours X ⊆ {b1, b2, . . . , bk}, there exists an almost decreasing
path starting from ρ(w), made up of forced vertices and which sees exactly the colours in X ∪ {β(ρ(w))}.

Suppose thatP is the decreasing path fromvk to a forced vertexy. Clearly, if vk−1 is on this path, then the subpath
of P from vk−1 to y is a decreasing path fromvk−1 to y. If vk−1 is not onP, thenvk−1vk ∪ P is an almost decreasing path
starting fromvk−1 and ending aty. As there are also decreasing paths fromvk to every other forced vertex, we now
have the following observation.

Observation 25. Given any vertex w and any forced vertex y, there exists an almost decreasing path starting from
ρ(w) and ending at y.

Lemma 26. If w is an optional vertex such that N(w) contains a forced vertex u, then N(w) = {u, y}where {β(u), β(y)} =
{b1, b2}. Moreover, there are decreasing paths Pu from ρ(w) to u and Py from ρ(w) to y such that Pu ∪ uwy ∪ Py is a
colourful cycle.

Proof. We shall first show thatβ(u) ∈ {b1, b2}. Suppose thatβ(u) < {b1, b2}.
We claim that there is a forced vertexz ∈ N(w) with β(z) < {b1, b2} such that there is an almost decreasing path

Pz from ρ(w) to z that does not containβ(w). Let Pu be the almost decreasing path fromρ(w) to u that exists by
Observation25. If β(w) is not inPu, then we can setz = u and we are done. Supposeβ(w) ∈ Pu. By Observation24,
there exists a pathP′u that starts fromρ(w) and whose vertices other thanρ(w) have exactly the colours that are
missing inPu. Let u′ be the endvertex ofP′u other thanρ(w). Clearly,Pu ∪ P′u is a colourful path and therefore, by
Observation7, we haveuu′ ∈ E(G). By Observation24, there exists an almost decreasing pathQ consisting of forced
vertices starting fromρ(w) that sees exactly the colours inPu other than{β(w), β(u)}. Now, {wu, uu′} ∪ P′u ∪ Q is a
colourful path and therefore the endvertex ofQ is a forced vertex adjacent tow. We claim that this endvertex ofQ
can be chosen asz. Clearly,Q is an almost decreasing path fromρ(w) to z that does not containβ(w) and this can be
considered to be the required pathPz. Also, sinceβ(u) < {b1, b2}, no vertex inPu has colourb1 or b2, implying that no
vertex in the almost decreasing pathQ has either of these colours. Therefore,β(z) < {b1, b2}. Hencez is a neighbour
of w of the required type.

Let z be a forced vertex inN(w) such that there is an almost decreasing pathPz from ρ(w) to z that does not contain
b1, b2 or β(w). By Observation24, there exists an almost decreasing pathQ starting fromρ(w) whose vertices other
thanρ(w) have exactly the primary colours that are not in the pathPz ∪ zw. Note thatb1 andb2 will be present in
Q. Let u3, u2, u1 be last three vertices ofQ in that order (i.e.,u1 is the endvertex ofQ other thanρ(w)). SinceQ is
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an almost decreasing path, we haveβ(u1) = b1 andβ(u2) = b2. Sincewz ∪ Pz ∪ Q is a colourful path, we have by
Observation7 thatwu1 ∈ E(G). By Observation24, there exists an almost decreasing pathQ′ that starts atρ(w) and
whose vertices other thanρ(w) see exactly the primary colours that are not present inQ. Note that the pathsQ′ and
Pz ∪ zw see exactly the same colours. Let the endvertex ofQ′ other thanρ(w) bew′. As Q′ ∪Q is a colourful path, we
havew′u1 ∈ E(G). By applying Lemma3 and Lemma21together, we know that there is a vertexp with β(p) = b1 that
is adjacent tou3. Let R be the union of the subpath ofQ from ρ(w) to u3 and the edgeu3p. By Observation24, there
exists an almost decreasing pathR′ starting fromρ(w) and whose vertices other thanρ(w) have exactly the primary
colours not present inR. Let r be the end vertex ofR′. Clearly,β(r) = b2, and becauseR ∪ R′ is a colourful path,
we havepr ∈ E(G). Now, observe that the pathzw ∪ Pz ∪ R ∪ pr is also a colourful path, and therefore, we have
wr ∈ E(G). Similarly, the pathQ′ ∪ R ∪ pr is also a colourful path, leading to the conclusion thatw′r ∈ E(G). Recall
thatw , w′ as one is a forced vertex while the other is an optional vertexandu1 , r asβ(u1) , β(r). We now have a
four cyclewrw′u1w in G, which is a contradiction.

Therefore, we can conclude thatβ(u) ∈ {b1, b2}. By Observation25, there exists an almost decreasing pathRu

from ρ(w) to u. By Observation24, there exists an almost decreasing pathR′u that starts fromρ(w), ends at a vertexu′,
and whose vertices other thanρ(w) have exactly the primary colours that are not inRu. By Observation7, we know
that uu′ ∈ E(G) and thatG[V(Ru) ∪ V(R′u)] is a colourful cycle. Therefore, there exists a pathP ∈ {Ru,R′u ∪ u′u}
such thatP does not containβ(w). By Observation24, there exists an almost decreasing pathQ consisting of forced
vertices that starts fromρ(w), ends at a vertexy, and whose vertices other thanρ(w) see exactly the primary colours
that are not inV(P) ∪ {w}. Now, notice thatwu ∪ P ∪ Q is a colourful path and thereforey will be adjacent tow. This
tells us thatβ(y) ∈ {b1, b2}. If P = Ru, then it is clear thatP is an almost decreasing path fromρ(w) to u. If, on the
other hand,P = R′u ∪ u′u, then notice that sincewu ∪ P ∪ Q is a colourful path which contains the verticesu, y with
{β(u), β(y)} = {b1, b2}, we haveβ(u′) > β(u). SinceR′u is an almost decreasing path, this tells us thatP = R′u ∪ u′u is
also an almost decreasing path. Also, sincewu ∪ P ∪ Q is a colourful path, both the almost decreasing pathsP and
Q do not see the colourβ(w), and hence they are both decreasing paths. Thus we can setPu = P andPy = Q as the
required decreasing paths. Now, the application of Lemma16 to the colourful cyclewu ∪ P ∪ Q ∪ yw and vertexw
tells us that these are the only two vertices with coloursb1 andb2 in N(w). Thus, we can conclude thatN(w) = {u, y}.

Lemma 27. Every optional vertex is adjacent to a forced vertex.

Proof. Suppose that there are optional vertices inG that are not adjacent to any forced vertex. Then letw be the
optional vertex among them that is closest to a forced vertex. SinceG is connected, we can conclude thatw is
adjacent to some optional vertexw′ that has a forced vertex inN(w′). By Lemma26, we know that there is a colourful
cycleC containingw′ in which every vertex other thanw′ is a forced vertex. Letz be that vertex inC with the highest
colour in {b1, b2, . . . , bk} \ {β(w), β(w′)}. Let P be that subpath ofC betweenw′ andz that does not containβ(w). By
Lemma3 and Lemma21, there exists a decreasing pathP′ starting fromz whose vertices other thanz have exactly
the primary colours that are not present in the pathP ∪ w′w. Clearly,ww′ ∪ P ∪ P′ is a colourful path and therefore
the endvertexy of P′ is adjacent tow. Notice thatP′ was a path consisting entirely of forced vertices and thereforey
is a forced vertex in the neighbourhood ofw, which is a contradiction.

Lemma 28. The set of optional vertices form an independent set.

Proof. We shall first observe that like forced vertices, every optional vertex also has a primary colour. Consider an
optional vertexw. By Lemma27, we know that there is a forced vertexy in N(w). Notice that by Lemma21, the
forced vertexy is in a colourful cycle containing only forced vertices and primary colours. Therefore, the optional
vertexw is adjacent to a colourful cycle containing only primary colours. Thus, by Corollary17, we can conclude
that theβ(w) is a primary colour.

We shall now prove the statement of the lemma. Letw1 andw2 be optional vertices such thatw1w2 ∈ E(G). Let
us assume without loss of generality thatβ(w1) < β(w2). Suppose first thatβ(w1) = bk−1 andβ(w2) = bk. In this
case,ρ(w1) = vk andρ(w2) = vk−1. Let y, z be forced vertices inN(w1) andy′, z′ be forced vertices inN(w2) such
thatβ(y) = β(y′) = b1 andβ(z) = β(z′) = b2. Note thaty , y′ andz , z′ asG is triangle-free. By Lemma26, we
know thaty, z, y′, z′ exist and also that there is a colourful cycleC containing verticesw1, vk and the edgesw1y and
w1z. Similarly, there is a colourful cycleC′ containing verticesw2, vk−1 and the edgesw2y′ andw2z′. Let P, Q be
the subpaths ofC with endverticesvk andw1 that contain the edgesw1y, w1z respectively. Similarly, letP′, Q′ be the
subpaths ofC′ with endverticesvk−1 andw2 that contain the edgesw2y′, w2z′ respectively. Letu be the vertex with
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colourbk−2 on the cycleC. Since from Lemma26, it is clear thatP − w1 andQ − w1 are both decreasing paths, it has
to be the case thatu is a neighbour ofvk on eitherP or Q. Suppose thatu is onP. By Lemma3, we know that there
is a decreasing pathR starting fromu such that its vertices other thanu see exactly the colours that are absent on the
pathP. Notice thatw2w1 ∪ (P − vk) ∪ R is a colourful path and hence the endvertex ofR is adjacent tow2. Clearly,
the endvertex ofR has colourb2 and therefore by Lemma26, this vertex is none other thanz′. Now, the pathsvku ∪ R
andvkvk−1 ∪ (Q′ − w2) are both distinct decreasing paths (note thatvk−1 is present in one of the paths but not in the
other) that meet at the vertexz′. Sinceβ(z′) = b2, we now have a contradiction to Lemma22(i). Therefore, we can
conclude thatu is onQ. Again by Lemma3, we know that there is a decreasing pathR starting fromu whose vertices
other thanu see exactly the colours that are absent on the pathQ. Notice thatw2w1 ∪ (Q − vk) ∪ R is a colourful path
and hence the endvertex ofR is adjacent tow2. As it is clear that this endvertex ofR has colourb1, by Lemma26, this
vertex is none other thany′. Now, the pathsvku∪R andvkvk−1∪ (P′ −w2) are both distinct decreasing paths that meet
at the vertexy′. By Lemma22(iii), we know that these paths together constitute a colourful cycle. But the colourb2

is not present in either of these paths, which is a contradiction.
By the above arguments, we can assume that{β(w1), β(w2)} , {bk−1, bk}. Therefore,β(w1) < bk−1 which means

thatρ(w1) = vk. By Lemma26, we know that there is a colourful cycleC containingw2 andρ(w2). Let P be that
subpath ofC betweenρ(w2) andw2 that does not containβ(w1) (note thatβ(ρ(w2)) , β(w1), implying that such a
path exists) and letQ be that subpath that does. Also, we shall denote byy the neighbour ofw2 on P and byz the
neighbour ofw2 on Q. By Observation24, there exists an almost decreasing pathP′ starting fromρ(w2) in which the
vertices other thanρ(w2) see exactly the colours that are not present in the pathP ∪ w2w1. Clearly,w1w2 ∪ P ∪ P′

is a colourful path and therefore the endvertexy′ of P′ is adjacent tow1. Note thaty′ is different fromy andz as
otherwise, there would be a triangle in the graph. LetQ′ be the almost decreasing path starting fromρ(w2), that exists
by Observation24, such that its vertices other thanρ(w2) see exactly the missing colours fromP′ other thanβ(w1).
Notice thatQ′ contains exactly the colours fromP. Let z′ be the endvertex ofQ′ other thanρ(w2). Clearly,z′ , w2 as
one is a forced vertex while the other is an optional vertex. Observe thatw1y′ ∪ P′ ∪ Q′ is a colourful path and hence
z′w1 ∈ E(G). As before,z′ is distinct fromy andz as otherwise, there would be a triangle in the graph.

Let Qz be the subpath ofQ from z to ρ(w2). Recall thatQ′ contains exactly the colours fromP. As the pathP∪Qz

was a colourful path, we can infer thatQ′ ∪ Qz is also a colourful path. Hence there is an edgezz′ ∈ E(G). But since
z ∈ N(w2) andz′ ∈ N(w1), we have the 4-cyclew2w1z′zw2 in G, which is a contradiction. Therefore we conclude that
for any two optional vertices verticesw1 andw2, we havew1w2 < E(G). We have thus proved that the set of optional
vertices is an independent set.

Let w be an optional vertex. From Lemma27 and Lemma26, we know thatN(w) = {y, z} whereβ(y) = b1,
β(z) = b2 and bothy andz are forced vertices. This also tells us thatβ(w) < {b1, b2}. Let T denote the graph induced
in G by the forced vertices other than those colouredb1. From Corollary23, we know thatT is a tree. By what we
have observed above, it is clear that each optional vertex has exactly one neighbour inV(T ). Also, Lemma28tells us
that the optional vertices form an independent set. Therefore,V(T ) and the set of optional vertices together induce a
tree inG. Since optional vertices do not have colourb1 as observed above, we can conclude that the subgraph induced
in G by the vertices other than those colouredb1 is a tree. This implies thatχ(G) ≤ 3, which is a contradiction to the
fact thatχ(G) = k > 4. This completes the proof of Theorem6 for the case whenk > 4.

4. Conclusion

We have shown in this paper that for any properly coloured graph G with g(G) ≥ χ(G), there exists an induced
colourful path onχ(G) vertices inG. The question of whether every properly coloured graphG contains an induced
colourful path onχ(G) vertices remains open for the case 3< g(G) < χ(G).
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