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On Induced Colourful Paths in Triangle-free Graphs

Jasine Babu Manu Basavaraju? L. Sunil Chandran® Mathew C. Francis*

Abstract

Given a graplG = (V, E) whose vertices have been properly coloured, we say thathaip& is colourful if no two
vertices in the path have the same colour. It is a corollathefGallai-Roy Theorem that every properly coloured
graph contains a colourful path gitG) vertices. It is interesting to think of what analogous fesae could obtain

if one considers induced colourful paths instead of jusbadll paths. We explore a conjecture that states that
every properly coloured triangle-free gra@hcontains an induced colourful path @(G) vertices. As proving this
conjecture in its fullest generality seems to bffidilt, we study a special case of the conjecture. We show hieat t
conjecture is true when the girth Gfis equal toy(G). Even this special case of the conjecture does not seenvéo ha
an easy proof: our method involves a detailed analysis okaiapkind of greedy colouring algorithm. This result
settles the conjecture for every properly coloured triarfgbe grapls with girth at leasg (G).
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1. Introduction

All graphs considered in this paper are simple, undirectetfimite. For a grapl®s = (V, E), we denote the vertex
set of G by V(G) and the edge set & by E(G). A functionc: V(G) — {1,2,...,k} is said to be groper k-colouring
of G if for any edgeuv € E(G), we havec(u) # c(v). A graph isproperly coloured, if it has an associated proper
k-colouringc specified (for som&). The minimum integek for which a graphG has a propek-colouring is the
chromatic number of G, denoted bw(G). A subgrapiH of a properly coloured grap® is said to becolourful if no
two vertices ofH have the same colour. If a colourful subgrdptof G is also an induced subgraph, then we say that
H is aninduced colourful subgraph of.

It is a corollary of the classic Gallai-Roy Theorefj fhat every (not necessarily optimally) properly coloured
graphG has a colourful path op(G) vertices (an alternative proof for this is given in TheordmWe are interested
in the question of when one can find colourful paths that ase miduced in a given properly coloured graph. Note
that the colourful path ow(G) vertices that should exist in any properly coloured gr&may not always be an
induced path. In fact, whe@ is a complete graph, there is no induced path on more than énties in the graph.
The following hitherto unpublished conjecture is due to NARavind.

Conjecture 1([2]). LetG be a triangle-free graph that is properly coloured. Theretiean induced colourful path
on y(G) vertices inG.

Surprisingly, despite being known to many researchers &k aver two years, the conjecture has remained open
even for the special case whe(G) = 4. Note that Conjecturg is readily seen to be true for any triangle-free graph
G with y(G) = 3, because the colourful path guaranteed to exi& by the Gallai-Roy Theorem is also an induced
path inG. In this paper, we first prove Conjectutdor the case whep(G) = 4. We then extend this proof to show
that the conjecture holds for any triangle-free gr&ptith g(G) > x(G), whereg(G) is thegirth of G, or the length
of the smallest cycle .

A necessary condition for Conjectuteo hold is the presence of an induced path¢®) vertices in any triangle
free graphG. Indeed something stronger is known to be true: each ventextiiangle-free grapl is the starting
point of an induced path op(G) vertices #]. There have been several investigations on variants oGti&i-Roy
Theorem [, 7]. Every connected grap® other thanC; admits a propeg(G)-colouring such that every vertex of
G is the beginning of a (not necessarily induced) colourfahpan y(G) — 1 vertices ]. Concerning induced trees,
Gyarfas conjectured that there exists an integer-valuedtion f defined on the finite trees with the property that
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every triangle-free grap@® with x(G) = f(T) containsT as an induced subgraph. This was proven true for trees
of radius two by Gyarfas, Szemerédi, and Tuzg |A stronger version of the Gallai-Roy Theorem that guagast

an induced directed path gif{G) vertices in any directed gragh would have easily implied Conjectufe Clearly,
such a theorem cannot be true for every directed graph. Berst@ad and Trotte6] show that no such result can
be obtained even if the underlying undirected grap@ @ triangle-free. They show that for every natural number
there exists a digrap@ such that its underlying undirected graph is triangle-&eé has chromatic numbkyrbutG

has no induced directed path on 4 vertices.

2. Preliminaries

Notation used in this paper is the standard notation usedaiphgtheory (see e.g3]). We shall now describe a
special greedy colouring procedure for an already cologragh that will later help us in proving our main result.

The refined greedy algorithm Given a properly coloured graph with the colouring3, we will construct a new
proper colouringy : V(G) — N> of G, using the algorithm given below. Lbi < b, < --- < by be the colours used

by .

For every vertex € V(G), seta(v) < 0
for i from 1 tot do
for vertexv with g(v) = by anda(v) = 0 do
Colourv with the least positive integer not present in its
neighbourhood, i.e., sefv) « min(N>?\ {a(u): ue N(v)}).

Definition 2 (Decreasing path)A pathusu, ... u in G is said to be a “decreasing path” if fori < I, a(u) < a(ui-1)
ands(ui) < B(Ui-1).

Lemma 3. Letve V(G)and X C {1,2,...,a(v) — 1}. Then thereisa decreasing path vujxujx-1 - . . U1 in G such that
for 1 <i < |X], a(u) € X.

This lemma directly shows that there is a colourful pathy¢8) vertices in every properly coloured gragh
(without using the Gallai-Roy Theorem).

Theorem 4. If G is any graph whose vertices are properly coloured, then there is a colourful path on y(G) vertices
inG.

Proof. Let s denote the proper colouring &. Run the refined greedy algorithm @to generate the colouring.
Clearly, the algorithm will use at leag{G) colours as the colouring generated by the algorithm is also a proper
colouring of G. Letv be any vertex irG with a(v) = y(G). Now consider the seX = {1,2,...,x(G) — 1}. By
Lemmas3, there is a path og(G) vertices starting at on which the colours in the colouriggjare strictly decreasing.
This path is a colourful path op(G) vertices inG. O

Corollary 5. Any properly coloured graph G with g(G) > x(G) has an induced colourful path on y(G) vertices.

Proof. If g(G) > x(G), then the colourful path given by Theorehis an induced path i®. O
This implies that the conjecture is true for all triangledrgraphs with chromatic number at most 3. It also implies

that in order to prove Conjectufle one only has to consider grapBawith g(G) < x(G). The main result of this paper

is that Conjecturd holds true for all triangle-free grapi&with g(G) = x(G).

3. Induced colourful paths in graphs with girth equal to chromatic number

In this section, we shall prove our main result, given by tieotem below.

Theorem 6. Let G be a graph with g(G) = x(G) = k, wherek > 4, and whose vertices have been properly coloured.
Then there exists an induced colourful path on k verticesin G.



Note that we can assume tliais connected, because if the theorem holds for connectgthgrehen it will hold
for the connected component@fwith chromatic number equal tcand hence also f@. Letg : V(G) — {1,2,...,1}
denote the proper colouring & that is given.

A k-cycle inG in which no colour repeats is said to beaourful k-cycle, sometimes shortened to just “colourful
cycle”. Notice that every colourful cycle i@ is also an induced cycle aG) = k. From here onwards, we shorten
“colourful path onk vertices” to just “colourful path”.

Suppose that there is no induced colourful pattk @ertices inG.

Observation 7. Since g(G) = k, if y1y2. .. yk isa colourful path on k verticesin G, then the edge y1yk € E(G). Thus,
V1Y ... YkY1 isa colourful k-cyclein G.

Let a be a proper colouring d& generated by running the refined greedy algorithnGonVe shall refer to the
colours of the colouring as “labels”. From here onwards, we shall reserve the wortbtodto refer to a colour
in the colourings. As before, whenever we say that a path or a cycle is “coldurfte are actually saying that it is
colourful in the colourings.

We say that a path with no repeating colours is an “almostsdesing path” if the subpath induced by the vertices
other than the starting vertex is a decreasing path. Noteattyadecreasing path is also an almost decreasing path.

The proof of Theoreng is split into two cases: wheln= 4 and wherk > 4.

3.1. Case when k= 4

In this case, we havg(G) = g(G) = 4.

As « is also a proper colouring @, we know that there exists a vertexn G with label 4. By Lemmag, there
exists a decreasing pathvsvov; wherev, = vand for 1< i < 3, we haves(vi) < B(viz1) anda(vi) = i. Again by
Lemmag3, we have a pathv,v; in which we haves(Vv)) < (V) < S(V), a(V;) = 2 anda(v;) = 1. Note thav, # v,
andv; # vi (as otherwisev,viv would be a triangle ifs). This means that the vertices{ivy, vs, V2, v1, V5, v } are all
pairwise distinct. LeB(v;) = b; for eachi, where 1< i < 4. We shall call the coloursy, b, bs, by “primary colours”.
Clearly, asv4vsVovy is a decreasing and hence colourful path, by Observatiore havev,v, € E(G).

Claim 8. B(v}) = by and B(v}) = by.

Proof. Suppose thag(v;,) # b,. Then we have that either the patjvavav, or the pathv,vavivs is colourful, which
implies thatv,v, € E(G), a contradiction since(v,) = a(v2). Therefore we havg(v,) = b,. Similarly if (v;) # by,
then the pathv;v,v,vy is colourful, which implies that} v, € E(G), a contradiction since(v;) = a(v1). Thus we have
B(vy) = by. O

Now notice that the pattr v,v,v3 is colourful and hence we have thgis € E(G). We call the vertices in the set
{V4, V3, V2, V1, V,, vy } “forced vertices”. Any other vertex in the graph will be eallan “optional vertex”. The following
observations about forced vertices are easy to verify.

Observation 9. For any forced vertex w, we have S(w) = byw).

Observation 10. Every forced vertex isin a colourful cycle containing only forced vertices and which also contains
the vertices vz and v,.

Observation 11. For any forced vertex w and set of primary colours X C {b; | by < B(w)}, there exists a decreasing
path starting fromw having only forced vertices and whose vertices other than w have exactly the coloursin X.

Observation 12. For w € {v3,V4} and for any set X of primary colours, there exists an almost decreasing path
containing only forced vertices and whose vertices other than w see exactly the coloursin X'\ {8(w)}.

For a vertexw, we defineo(w) = vs if S(w) = by andp(w) = v4 otherwise.

Lemma 13. If an optional vertex is adjacent to a forced vertex, then it is adjacent to at least two forced vertices.
Moreover, there is a colourful cycle containing the optional vertex in which every other vertex is a forced vertex.



Proof. Let w be an optional vertex that is adjacent to a forced veutekrom Observatiori0, there is a colourful
cycleC that containss andp(w). Let P be a subpath of with endverticeg(w) andu which does not contain the
colourps(w) (note that ifo(w) = u, thenP consists of just the single vertex= p(w)). From Observatiod?2, there
exists an almost decreasing p&hfrom p(w) whose vertices other tharfw) see 4- [V(wu U P)| primary colours not
present in the pattvu U P. Let x be the endpoint of this path (note tHe{tcan be the single vertex= p(w) in case
the pathwu U P already contains 4 vertices). Cleany) U P U P’ is a colourful path and heneex € E(G). As it can
be easily seen thatis a forced vertex that is fierent fromu, we now have at least two forced vertices\(w). Also,
wu U P U P’ U xw is a colourful cycle with the required properties. O

Lemma 14. All optional vertices are adjacent to a forced vertex.

Proof. Consider the set of all optional vertices that have no fokegtices as neighbours. Letbe a vertex in this set
that is closest to a forced vertex. &sis connectedw has a neighbour’ such thatN(w’) contains a forced vertex.
From Lemmal3, there is a colourful cycl€ containingw’ in which all other vertices are forced vertices. kéte the
vertex inC which has highest colour i@ other tharp(w) ands(w’). From the observation in the previous sentence,
we know thatzis a forced vertex. LelP be a subpath of with endverticesv andz that does not contajf(w). By
Observatiorll, fromz, there is a decreasing pawhose vertices other tharsee 4- [V(ww' U P)| primary colours
not seen on the pathw’ U P. Let x be the endpoint of’. As P’ is a decreasing path starting from the forced vertex
we have thak is a forced vertex. Nowyw’ U P U P’ is a colourful path and heneex € E(G). But nowx is a forced
vertex inN(w), contradicting the assumption thathad no forced vertices in its neighbourhood. O

LetS; denote the set of optional vertices adjacent to at least bite dorced vertice$vs, Vo, v; } and letS; denote
the set of optional vertices adjacent to at least one of theetbverticegvs, vi, Vv, }.

Lemma 15. (i) S;andS; aredigoint, and
(if) S; and S, are both independent sets.

Proof. First let us show tha$; andS; are disjoint. Suppose that there is a vertex S; N S,. We know that there
are two forced verticez andy in N(w) such thatx € {v4,vo, v} andy € {vs,v1,V,}. AsG is triangle-free, we only
have the two possibilitiesx(= vi,y = v1) or (X = 2,y = ;). Suppose that = v; andy = vi. If S(w) # by, then as
at least one of the pathves;v,v4 or w|vavy is a colourful path, we havev, € E(G). But this is a contradiction as
Wv4Vv; is a triangle inG. Therefore, we can conclude thg{tv) = bs. But now, the pathw;vovs is colourful, implying
thatwvz € E(G). This is a contradiction asvsv; is now a triangle irG. The other case whexn= v, andy = Vv, is
symmetric. This proveg).

This tells us that for each vertex € Sy, the forced vertices itN(w) all lie in {v4,V»,V;} and for each vertex
W € S,, the forced vertices ilN(w) all lie in {vs, vy, V,}. Since we know from Lemma3 and Lemmal4 that each
vertex inS; U S has at least two forced vertices in their neighbourhood,aveconclude that each vertex$ has
at least two neighbours frofw,, v», vi} and that each vertex i@, has at least two neighbours frows, vi, v;}. This
means that for any twa, w' € Sy, there is at least one vertex fw, v2, v} that is a neighbour of botv andw’. As
G is triangle-free, we can conclude thatv ¢ E(G). For the same reason, for any two vertigesv € S,, we have
ww ¢ E(G). This provegii). O

From Lemmal5(i), we know that there are no edges betw&grand{vs, v1,V,}. Similarly, there are no edges
betweenS; and{vs, v2,V;}. Now, by LemmalX(ii), we have thaB; U {v3,vi,V,} is an independent set ai®} U
{Va,V2,V;} is an independent set. Since from Lemfg we know thatV(G) = S1 U Sy U {4, V3, V2, V1, V), V3 }, this
tells us thatG is bipartite, which contradicts the assumption thé®) = 4. Therefore, there can be no properly
coloured graplt such thag(G) = x(G) = 4 with no induced colourful path on 4 vertices. This comsetee proof
of Theoremb for the casek = 4.

3.2. Case when k 4
The proof for this case also follows the same general pattethe cask = 4, but more technicalities are involved.

Lemma 16. Let y1y»...Yyky1 be a colourful k-cycle. Let z € N(yi) \ {yi-1,Vi+1} for somei € {1,2,...,k}. Then

B2 € {B(Y1), .- ..BMI \ {BYi-1), B(Yi). B(Yi+1)}. (Herewe assumethat yi 1 = y; wheni = k and that yi_; = yx when
i=1)



Proof. Clearly,z ¢ {y1,¥2,...,Yk} as every colourful cycle is an induced cycle. Supp@@e ¢ {B(Y1),...,B8()} \
B(Yi-1). B(). B(Yi+1)}. Clearly,(2) # B(yi). Suppose tha(2) # B(yi+1). Then observe thayyi,i...Yiy1...Yi-2
is a colourful path ork vertices and hencey,_, € E(G). This implies thatzyyi_1yi_»z is a 4-cycle inG, which
is a contradiction. 13(2) = B(Yi+1), then we havgg(2) # B(yi-1). In this case, the pathyiyi_1...V1Yk...Vi+2 iS a
colourful path and the same reasoning as above tells ushbeg ts a 4-cycley,yi.1Yi+2z in G, which is again a
contradiction. O

Corollary 17. Let y1y>...Yky1 be a colourful k-cycle. Let z € N(y;) for somei € {1,2,...,k}. Then g(2) €
{By1), ... By}

The vertexv: Fix vto be a vertex which has the largest label. Simégalso a proper vertex colouring &f it should
use at leask labels. In other wordsy(v) > k.

Primary cycle: By applying Lemma3 to v and the set of labeld, 2, ...,k — 1}, we can conclude that there exists a
decreasing patiVi_1 . .. v1 wherevy = vand such that(v;) =i forall i < kandB(vi) < B(viy1) forall 1 <i < k- 1.
Since this path is colourful, by Observati@nwi_1v-2 . . . 1V is a colourful cycle, which we shall call the “primary
cycle”. For 1< i < k, we shall denote by the colours(v). The set of colourgby, by_1, . .., b1} shall be called the
set of “primary colours”.

Lemma 18. «(v) = k. Hence, for all i, a(v;) = i.

Proof. Suppose for the sake of contradiction thét) > k. By Lemmas3, there exists a decreasing pathiyk. .. Y1
whereyy,1 = vand for 1< i < k, we havex(y;) = i andB(y;) < B(Yi+1). As the path$i.1Yk. . . Y2 andykyi-1...Y1 are
both colourful, it must be the case thatiy», yky1 € E(G). But then,yk,1Y2Y1YkYk+1 IS @ cycle on four vertices i,
which is a contradiction. O

Forced and optional vertices:A vertexu € V(G) is said to be a “forced vertex” if there is a decreasing petmfv
to u. Any vertex ofG that is not forced is said to be an “optional vertex”.

Lemma 19. For eachi € {1,2,...,k— 1} thereis exactly one vertex u; in N(v) with label i. Moreover, 8(u;) = b; and
thereis a colourful cycle C; containing u; and v that contains only forced vertices.

Proof. Observe that because the refined greedy algorithm assigivedo bek, it must be the case that for every
i €{1,2,...,k- 1}, there exists a vertex, which we shall aallin N(v) such that(u;) = i andB(u;) < bx. We shall
choosay,_1 to bevy_;. Becausey is adjacent tav which is on the primary cycle, by Corollafy7, we know thap(u;)

is a primary colour.

We claim thaiB(u;) = b; and that there is a colourful cycle containmm@ndu; that contains only forced vertices.
We shall use backward induction @mprove this. Consider the base case whenk — 1. Sinceux_1 = Vi1, we
know thatB(uk-1) = b1 and that there is a colourful cycle (the primary cycle) thattainsu,_1 andv and also
contains only forced vertices. Thus the claim is true forliase case. Let us assume that the claim has been proved
for U1, U2, . . ., Uir1. If () = bj > by, thenb;j € {bis1, biio, ..., b-1}. By the induction hypothesis, we know that
the vertexu; € N(v) hasp(u;) = b; and that there is a colourful cycg; containingu; andv. Note thatu; # u; (as
a(u) # a(u;)), butg(u;) = B(u) = b;. Therefore, a€; containsu; and is a colourful cycle, it cannot contain
Sinceu; is adjacent tov which is onC;, andg(u;) = b;j, we now have a contradiction to Lemrthé (note thatu;vis an
edge ofC; as every colourful cycle is a chordless cycle). So it has tthbecase tha#(u;) < bj. By Lemmas3, there
exists a patlyyi_1yi—2...y1, wherey; = u;, such that for 1< j <i -1, a(y;) = j andp(y;) < B(yj+1). Notice that
V1Yo ... YiVkVk-1-. .. Viy1 is a colourful path and therefore by Observafio@; = y1y2. .. ViVkVk_1. .. Vi+1Y1 is a colourful
cycle containing botly; andv. Sincey; is adjacent tw;,; which is onC;, by Corollary17, we know that there is some
vertexz on C; such thap3(z) = b;. Clearly,z € {y;,¥i-1,...,Y1}. If Zz€ {yi_1,...,y1}, theng(y)) > B(2 = b;, which
is a contradiction to our earlier observation tgéat;) < b; (recall thatu; = y;). Thereforez = y;, which implies that
B(u;) = b;. Notice that eacly; € {yi, yi-1. ..., Y1}, because of the decreasing pajlyi_1 ...y, is a forced vertex. Thus,
C; is a colourful cycle containing andv that contains only forced vertices. This shows that forianyd, 2, ..., k—1},
B(ui) = by and there is a colourful cycle containimgndu; that contains only forced vertices.

We shall now show that; is the only vertex inN(v) which has the labdl Suppose that there is a vertexe
N(v) such thate(u) = i andu # u;. Sinceu is adjacent to a colourful cycle containing only primaryawnis (the
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primary cycle), we can conclude from Corollaty that3(u) is a primary colour. Thereforgg(u) = b; for some
j €1{1,2,...,k—-1}. From what we observed aboy¥u;) = b; and there exists a colourful cyd® containing the
verticesv andu;. Note thatu; # u since if j # i, thenu; andu have diferent labels and if = i, we know thau; # u
(as we have assumed that# u). Henceu is not inC; (asC; already has a vertax with 8(u;) = b;) but is adjacent
to it. But nowC; andu contradict Lemmade6 asu;v is an edge oC;. Thereforepy cannot exist. O

Corollary 20. Let C be any colourful cycle containing v. Then C contains only primary colours.

Proof. Notice that from Lemma9, we know that for every primary coloin € {by, b, ..., b1}, there is a vertex;
with g(u;) = b; that is adjacent te. Becausev is in C, we can apply Corollari7to C andu; to conclude thab; is
present inC. This means that every primary colour appears on at leastvemnex ofC. SinceC was ak-cycle, this
means thaC contains only primary colours. O

Lemma 21. If u € V(G) is a forced vertex such that «(u) = i, then B(u) = bj. Moreover, if P is any decreasing path
from v to u, then thereis a colourful cycle which has P as a subpath and contains only forced vertices and primary
colours.

Proof. Consider a forced vertax We shall prove the statement of the lemmaudry backward induction onr(u).
The statement is true far(u) € {k, k — 1} as there is only one forced vertex each with lalkedsidk — 1—which arev
andvi_; respectively (recall that from Lemmi®, ux_; = vi_1 is the only vertex ifN(v) with labelk — 1). Also, note
that they are both in a colourful cycle (the primary cyclettbatisfies the required conditions. Let us assume that the
statement of the lemma has been provedifs) € {(k,k—1,...,i + 1}. Let us look at the case wherfu) = i. Letz
be the predecessor ofin the pathP and letP, be the subpath d? that starts a¥ and ends at. Leta(2) = j. By the
induction hypothesigi(z) = b; andzis in a colourful cycleC that contains only primary colours. By Corollaty,
we can infer thaB(u) is a primary colour. Sinc® was a decreasing pau) € {b1, by, ..., bj_1}. If B(U) = by with

b; > by > by, then notice that there already exists a neighlyafrz with a(y) = | andg(y) < B(2), because the refined
greedy algorithm set(z) = j. Note thatP,Uzy is a decreasing path frouto y, which implies thay is a forced vertex.
Clearly,u # y asa(u) # a(y). Because of our induction hypotheg$éy) = by and there is a colourful cycle containing
the pathP,Uzy as a subpath. Ag(u) = B(y), uis outside this cycle but is a neighbourofThis contradicts Lemm&6.
Thereforep(u) < b;. Consider the decreasing patki_1 ...y: wherey; = u, and forse {1, 2,...,i—1}, a(ys) = sand
B(Ys) < B(Ys+1) Which exists by Lemma&. Again by LemmeB, there exists a decreasing p&tstarting fromv whose
vertices other tham have exactly the labels i+ 1,i + 2,.. ., k} that are not seen d®,. By the induction hypothesis,
we can now see that every colour{lm, 1, bi;2, ..., by} occurs exactly once in the pa@u P,. Sinceyyi_1...y1is a
decreasing path in which every vertex has colour at igste can conclude that the pah= QU P, U zyyi_1...Y1

is a colourful path. By Observatiof the graph induced by(P’) is a colourful cycle containing, which we shall call
C’. By Corollary20, we know thatC’ contains only primary colours. Now,#{u) < b;, then becausay;_1 ...y1 was a
decreasing path, it should mean tBt;) < by, which is a contradiction. Thug(u) = b; andC’ is a cycle containing
P as a subpath and which contains only forced vertices andapyinolours (note that eaghy, for1< s<k-1,isa
forced vertex as there is the decreasing patby zy;yi_;1 ... ys fromvtoys). O

Lemma 22. If P; and P, are two decreasing paths (P1 # P,) that start from a forced vertex u and meet at a vertex z,
then
(i) (@ =branda(?) = 1
(il) u=v, and
(iif) P1 U P, isa colourful cycle.

Proof. Sinceu is a forced vertex there exists a decreasing pafifom v to u.

We shall first show that the patt’s andP, cannot see exactly the same set of colours. Suppose forkbeta
contradiction that they do. As the patRs andP, are diferent, there is a vertex in one of these paths that is not in
the other. Let us assume without loss of generality thaetiea vertex in the patR, that is not present if?;. We
denote byx’ the first vertex (when walking from) on P, that is not present i;. Let x be the predecessor &f on
P,. Clearly,x is also inP;. Let X" denote the successorwbn P;. As P; andP, are both decreasing paths with the
same set of colours, it must be the case gfat) = B(x”). From Lemma21, we know that there is a colourful cycle
that containd® U P; as a subpath. Clearly, this colourful cycle contaifisand as3(x’) = B(x”), this cycle does not
containx’. But now this colourful cycle ang’ contradict Lemmad.6.
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Leta(2) = i. By Lemma21l, we haves(2) = b;. LetY be the decreasing pattyi_: ...y: (Quaranteed to exist by
Lemma3) wherey; = z, and forse {1,2,...,i — 1,i}, a(ys) = sandB(ys) = bs (by Lemma21; note that eaclys is a
forced vertex because of the decreasing patiP, Uyiyi_1 ... Yys fromvto it). Again by LemmaB, for j € {1, 2}, there
exists a decreasing pa}) starting fromv whose vertices other tharhave exactly the labels in+1,i+ 2, ..., k} that
are not seen oR U P;. Note that all the vertices iR, Pj, Q; andY are forced vertices and therefore by Lemaia
they will all have primary colours. Furthermore, the colon the pattQ; are exactly the primary colours greater
thanb; that are not seen on the path§ P;) — v and the pathy will contain all the primary colours less than or equal
to b. Letw; denote the endpoint @; that is notv. SinceP U P; UY U Qj is a colourful path, we have;y; € E(G)
for j € {1,2}. Observe thaP; andP, are two paths such that in at least one of them, we have a viladexs not
present in the other. Since these paths also have the sarmpeietsdit is clear that there is a cycle @&using only
edges inE(P;) U E(P,). Note that as®; andP, do not see exactly the same set of colours, the p@ths w;y; and
Q2 U wopy; are diferent. Now, following the same reasoning as above, one @thagethere is at least one cycleGn
whose edges are froB(Q; U wiy1) U E(Q2 U w,y;). Since girth ofG is k, we now have the following inequalities.

IPall + [IPall > k

1Qull +11Q2ll + 2>k
AsPUPjUY U Qjuw,y; is a colourful cycle forj € {1,2}, we have the following equalities.

P+ NPl + [1Qull + IVl + 1 =k
1P+ NP2l + 1Qall + IVl + 1 =k

Summing the first two inequalities, we get,

IP4]l + [IP2ll + [1Qull + IQ2ll +2 > 2k
and by adding the third and fourth, we get,

2Pl + 1Pl + [IP2ll + [1Qull + I Qall + 2/IYIl + 2 = 2k.

Combining the previous two equations, we have,

2Pl +2]IY][ <0

which implies that|Y|| = 0 and||P|| = 0. Therefore, we have(z) = 1 (and hence3(2) = b;) and alsau = v. This
proves(i) and(ii).

This means thaY contains just the vertexand that?; andP; are both paths that start\aand end arz. Now, by
our earlier observation,is in a colourful cycleC; = P; U Q; Uw;zand also in a colourful cycl€; = P, U Qa Uw,z
There exists a vertex € C; with g(Z) = bp and a vertex” in C, such thap3(z’) = b,. Because each &@; andC; is
the union of two decreasing paths frarone can conclude thatis a neighbour of in C; andz” is a neighbour of
in C,. Applying Lemmal6to either one of the cycles; or Cy, it can be seen that there can only be one neighbour of
zcolouredb,, and thereforez’ = z’. Thus, bothC; andC; contain the vertex'. LetR;, for j € {1, 2}, be the subpath
of C;j with v andz as endvertices that does not contairClearly,R; is a decreasing path. TherefoRy,andR; are
two decreasing paths that startveind meet ar'. If Ry # Ry, then since3(z') = by, we have a contradiction 1@).
Therefore, it must be the case thiat = Ry, which implies that one oP; —z= P, -2 Q1 = Q2, P1—z=Qy or
P, —z= Q is true. SinceP; # P,, we know thatP; — z # P, — zand becausB; andP, do not contain the same set
of colours, we also hav®; # Q.. Therefore, we can conclude that eitliiar— z = Q, or P, — z = Q. But in either
case, we have that the colours on the gtk {v, z} are exactly all the primary colours that are abser4inThis can
only mean thaP; U P, is a colourful cycle. This provesii).

|

Corollary 23. The graph induced by all the forced vertices other than those coloured b; isatree.



Proof. Suppose for the sake of contradiction that there is a cyaléaduing only forced vertices with colours other
thanb;. Letu be the vertex in the cycle with the least colour in the cologid and letu” andu” be its two neighbours
on the cycle. Since’ andu” are both forced vertices there are decreasing [RtasadP” that start at and end at’
andu” respectively. LeP; be the decreasing path obtained by addirtig P* andP, be the decreasing path obtained
by addingu to P”. SinceP’ # P”, we clearly havé®; # P,. Thus,P; andP, are two decreasing paths startingsat
and meeting atl and becausg(u) # by, we have a contradiction to Lemr2a(i). O

Given any vertexv, we defingo(w) = w1 if B(w) = by andp(w) = v otherwise.

Let X C {by, by, ..., bk} be any set of primary colours. Let= {i | bj € X}. From Lemma3, we know that there
is a decreasing path starting fromconsisting only of forced vertices and which sees exactyldbels inL U {k}.
Applying Lemma21to the vertices of this path, we have that this path seeslgxthetcolours inX U {by}. Thus for
any set of colourX C {bs, by, ..., by}, there exists a decreasing path starting frgmmade up of forced vertices and
which sees exactly the colours ¥au {by}. Note that ifb, ¢ X, we can apply the same argumentto; and X and
conclude that there is a decreasing path starting_atconsisting only of forced vertices and which sees exac#y th
coloursinXuU{by_1}. Suppose thadi, € X. Then letX’ = X\ {bx_1}. From our above observation, there is a decreasing
path starting fronvy, consisting of only forced vertices and which sees exabt#iycblours inX’. This path, together
with the edges_1vk gives us an almost decreasing path starting fkpm that consists only of forced vertices and
which sees exactly the coloursi {b_1}. Thus, for any set of primary colouk§ we have almost decreasing paths
starting from bothv, andv_; consisting of only forced vertices and which see exactlydbleurs inX U {by} and
X U {bx-1} respectively. This gives us the following observation.

Observation 24. For any vertex w, and for any set of colours X C {by, by, ..., by}, there exists an almost decreasing
path starting from p(w), made up of forced vertices and which sees exactly the coloursin X U {8(o(w))}.

Suppose tha® is the decreasing path from to a forced vertey. Clearly, ifvi_1 is on this path, then the subpath
of P fromv,_1 toyis a decreasing path from_; toy. If v_; is not onP, thenv,_;v U P is an almost decreasing path
starting fromvi_; and ending ay. As there are also decreasing paths franbo every other forced vertex, we now
have the following observation.

Observation 25. Given any vertex w and any forced vertex y, there exists an almost decreasing path starting from
p(w) and ending at y.

Lemma 26. If wisan optional vertex such that N(w) containsa forced vertex u, then N(w) = {u, y} where{B(u), 8(Y)} =
{b1, bo}. Moreover, there are decreasing paths P, from p(w) to u and Py from p(w) to y such that P, U uwy U Py isa
colourful cycle.

Proof. We shall first show thad(u) € {b;, b,}. Suppose thad(u) ¢ {bs, by}.

We claim that there is a forced vertex N(w) with () ¢ {bs, b,} such that there is an almost decreasing path
P, from p(w) to z that does not contaig(w). Let P, be the almost decreasing path fraiw) to u that exists by
Observatior?25. If A(w) is not inP,, then we can set = u and we are done. Suppgs@v) € P,. By Observatior24,
there exists a patl;, that starts fromp(w) and whose vertices other thafw) have exactly the colours that are
missing inP,. Letu’ be the endvertex d?;, other tharp(w). Clearly,P, U P}, is a colourful path and therefore, by
Observatior?, we haveuu’ € E(G). By Observatior?4, there exists an almost decreasing pattonsisting of forced
vertices starting fronp(w) that sees exactly the colours ity other than{B(w), 8(u)}. Now, {wu, uu’} U P, U Qs a
colourful path and therefore the endvertex®fs a forced vertex adjacent te&. We claim that this endvertex @
can be chosen as Clearly, Q is an almost decreasing path fraifw) to z that does not contajf(w) and this can be
considered to be the required p&th Also, since3(u) ¢ {by, by}, no vertex inP, has coloub; or by, implying that no
vertex in the almost decreasing p&@dthas either of these colours. Therefg&) ¢ {b;, by}. Hencezis a neighbour
of w of the required type.

Letzbe a forced vertex ibl(w) such that there is an almost decreasing pattnom p(w) to zthat does not contain
by, b, or B(w). By Observatior?4, there exists an almost decreasing p@tktarting fromp(w) whose vertices other
thanp(w) have exactly the primary colours that are not in the g3ty 2v. Note thatb; andb, will be present in
Q. Letus, up, up be last three vertices @ in that order (i.e.y; is the endvertex o other tharp(w)). SinceQ is
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an almost decreasing path, we hg@e;) = b; andp(uz) = b,. Sincewz U P, U Q is a colourful path, we have by
Observatiory thatwu; € E(G). By Observatior24, there exists an almost decreasing pathhat starts ap(w) and
whose vertices other thar{w) see exactly the primary colours that are not prese.imNote that the path®” and
P,U 2w see exactly the same colours. Let the endvert&y afther tharp(w) bew’. As @ U Q is a colourful path, we
havew'u; € E(G). By applying Lemma& and Lemm&1together, we know that there is a verigwith 8(p) = b, that
is adjacent taiz. Let R be the union of the subpath @ from p(w) to uz and the edgesp. By Observatior24, there
exists an almost decreasing p&hstarting fromp(w) and whose vertices other thatw) have exactly the primary
colours not present iR. Letr be the end vertex dR. Clearly,3(r) = by, and becausR U R is a colourful path,
we havepr € E(G). Now, observe that the pattw U P, U RU pr is also a colourful path, and therefore, we have
wr € E(G). Similarly, the path)’ U RU pr is also a colourful path, leading to the conclusion tvate E(G). Recall
thatw # w as one is a forced vertex while the other is an optional veatedu; # r asp(ui) # B(r). We now have a
four cyclewrw u;w in G, which is a contradiction.

Therefore, we can conclude tha(u) € {bs, b,}. By Observatior25, there exists an almost decreasing path
from p(w) to u. By Observatior24, there exists an almost decreasing (Rlthat starts fromp(w), ends at a verte,
and whose vertices other thatw) have exactly the primary colours that are noRn By Observatior?, we know
thatuu’ € E(G) and thatG[V(R,) U V(R))] is a colourful cycle. Therefore, there exists a pBtte {R,, R, U u'u}
such thatP does not contai(w). By ObservatiorR4, there exists an almost decreasing ptbonsisting of forced
vertices that starts from(w), ends at a vertey, and whose vertices other tha(w) see exactly the primary colours
that are not iV(P) U {w}. Now, notice thatvu U P U Q is a colourful path and therefoyewill be adjacent taw. This
tells us thap(y) € {b1,by}. If P = Ry, then it is clear thaP is an almost decreasing path frgifw) to u. If, on the
other handP = R, U U'u, then notice that sinceu U P U Q is a colourful path which contains the vertiagy with
{B(U), B(Y)} = {b1, bo}, we haved(u’) > B(u). SinceR), is an almost decreasing path, this tells us that R, U UW'u is
also an almost decreasing path. Also, simceu P U Q is a colourful path, both the almost decreasing p&tlasnd
Q do not see the colow(w), and hence they are both decreasing paths. Thus we c&j seP andPy = Q as the
required decreasing paths. Now, the application of Lerigio the colourful cyclevu U P U Q U yw and vertexw
tells us that these are the only two vertices with coldigrandb, in N(w). Thus, we can conclude thii{w) = {u, y}.

|

Lemma 27. Every optional vertex is adjacent to a forced vertex.

Proof. Suppose that there are optional vertice&ithat are not adjacent to any forced vertex. Thenndie the
optional vertex among them that is closest to a forced verixceG is connected, we can conclude tivatis
adjacent to some optional vertek that has a forced vertex M(w’). By Lemma26, we know that there is a colourful
cycleC containingw’ in which every vertex other tham is a forced vertex. Let be that vertex irC with the highest
colour in{by, by, ..., b} \ {B(w), B(w)}. Let P be that subpath df betweenw' andzthat does not contaig(w). By
Lemma3 and Lemma21, there exists a decreasing pdthstarting fromz whose vertices other tharhave exactly
the primary colours that are not present in the gathw'w. Clearly,ww U P U P’ is a colourful path and therefore
the endvertey of P’ is adjacent tav. Notice thatP’ was a path consisting entirely of forced vertices and tloeesf
is a forced vertex in the neighbourhoodwfwhich is a contradiction. O

Lemma 28. The set of optional vertices form an independent set.

Proof. We shall first observe that like forced vertices, every aplosertex also has a primary colour. Consider an
optional vertexw. By LemmaZ27, we know that there is a forced vertgin N(w). Notice that by Lemma&1, the
forced vertexy is in a colourful cycle containing only forced vertices andhpary colours. Therefore, the optional
vertexw is adjacent to a colourful cycle containing only primaryawis. Thus, by Corollart7, we can conclude
that thes(w) is a primary colour.

We shall now prove the statement of the lemma. Wwetindw, be optional vertices such thagw, € E(G). Let
us assume without loss of generality tigéiv;) < B(w.). Suppose first thag(w;) = b1 andp(w,) = by. In this
casep(w;) = vk andp(w,) = w_1. Lety,zbe forced vertices itN(w;) andy’, Z be forced vertices itN(w,) such
thatB(y) = B(Y') = by andB(2) = B(Z) = b,. Note thaty # y andz # Z asG is triangle-free. By Lemma&6, we
know thaty, z Y, Z exist and also that there is a colourful cy@econtaining verticesv, v« and the edgegny and
wiz Similarly, there is a colourful cycl€” containing verticesv,, vi_1 and the edgegry andw,z. Let P, Q be
the subpaths of with endverticesy andw; that contain the edges,y, wiz respectively. Similarly, leP’, Q' be the
subpaths o€’ with endverticesx,_; andw;, that contain the edgesy’, w,Z respectively. Letl be the vertex with
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colourby_, on the cycleC. Since from Lemma§6, it is clear thatP — w; andQ — w; are both decreasing paths, it has
to be the case thatis a neighbour ofi on eitherP or Q. Suppose that is onP. By Lemma3, we know that there

is a decreasing pafR starting fromu such that its vertices other tharsee exactly the colours that are absent on the
pathP. Notice thatw,w; U (P — v) U Ris a colourful path and hence the endvertexRa$ adjacent tawv,. Clearly,

the endvertex oR has colouib, and therefore by Lemmz26, this vertex is none other thanh Now, the pathsxuU R
andwVk_1 U (Q' — w,) are both distinct decreasing paths (note that is present in one of the paths but not in the
other) that meet at the vertek SinceB(Z) = b,, we now have a contradiction to Lemrga(i). Therefore, we can
conclude thatiis onQ. Again by Lemma3, we know that there is a decreasing pRtbtarting fromu whose vertices
other tharu see exactly the colours that are absent on the Qatiotice thatw,w; U (Q — w) U Ris a colourful path
and hence the endvertexRis adjacent tav,. As it is clear that this endvertex &has coloub;, by Lemma26, this
vertex is none other than. Now, the paths,uU Randvyvi_1 U (P’ —wsy) are both distinct decreasing paths that meet
at the vertexy’. By Lemma22(iii), we know that these paths together constitute a colourftiecyBut the coloub,

is not present in either of these paths, which is a contriadict

By the above arguments, we can assume {iB@t;), S(w2)} # {bk-1,bx}. Thereforep(w;) < bx_1 which means
thatp(w1) = w. By Lemma26, we know that there is a colourful cycte containingw, andp(w,). Let P be that
subpath ofC betweernp(w,) andw, that does not contaif(w;) (note thatB(o(w.)) # B(wi), implying that such a
path exists) and le® be that subpath that does. Also, we shall denotg the neighbour ofv, on P and byz the
neighbour ofw, on Q. By Observatior24, there exists an almost decreasing pRitistarting fromo(w,) in which the
vertices other thap(w,) see exactly the colours that are not present in the Bathw,w;. Clearly,w;w, U P U P’
is a colourful path and therefore the endveryéxf P’ is adjacent tonv;. Note thaty’ is different fromy andz as
otherwise, there would be a triangle in the graph. Qebe the almost decreasing path starting fia,), that exists
by Observatior24, such that its vertices other thafw,) see exactly the missing colours frde other thans(w;).
Notice thatQ’ contains exactly the colours frofh LetZ be the endvertex d@ other tharp(w,). Clearly,Z # w; as
one is a forced vertex while the other is an optional vertdyseédve thatvy’ U P’ U Q' is a colourful path and hence
Zw; € E(G). As beforeZ is distinct fromy andz as otherwise, there would be a triangle in the graph.

Let Q, be the subpath dp from zto p(w,). Recall that)’ contains exactly the colours frof As the patiP U Q,
was a colourful path, we can infer th@t U Q, is also a colourful path. Hence there is an edgjes E(G). But since
ze N(w;) andZ € N(wy), we have the 4-cyclenw;Z 2w, in G, which is a contradiction. Therefore we conclude that
for any two optional vertices verticeg andw,, we havev;w, ¢ E(G). We have thus proved that the set of optional
vertices is an independent set.

O

Let w be an optional vertex. From Lemn2¥ and Lemma26, we know thatN(w) = {y,z} whereB(y) = by,
B(2) = by and bothy andz are forced vertices. This also tells us tBaw) ¢ {b;, b,}. Let T denote the graph induced
in G by the forced vertices other than those colousedFrom Corollary23, we know thafT is a tree. By what we
have observed above, it is clear that each optional vertexxactly one neighbour ¥i(T). Also, Lemma28tells us
that the optional vertices form an independent set. These¥{T) and the set of optional vertices together induce a
tree inG. Since optional vertices do not have colbwias observed above, we can conclude that the subgraph induced
in G by the vertices other than those coloulrds a tree. This implies that(G) < 3, which is a contradiction to the
fact thaty(G) = k > 4. This completes the proof of Theordfior the case whek > 4.

4. Conclusion

We have shown in this paper that for any properly colouregly@ with g(G) > x(G), there exists an induced
colourful path ony(G) vertices inG. The question of whether every properly coloured gr&ptontains an induced
colourful path ony(G) vertices remains open for the case §(G) < x(G).
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