DELAYED S₁→S₀ AND S₂→S₀ FLUORESCENCE, DELAYED EXCIMER FLUORESCENCE, AND PHOSPHORESCENCE FROM BIPHENYLENE

Joachim HERTZBERG and Bernhard NICKEL
Max-Planck-Institut für Biophysikalische Chemie, Abteilung Spektroskopie, Am Fassberg, D-3400 Göttingen, FRG

Received 7 September 1988

In liquid solution, the population of the metastable triplet state of biphenylene by triplet energy transfer from a triplet sensitizer leads to different types of delayed luminescence from biphenylene: delayed S₁→S₀ and S₂→S₀ fluorescence and delayed excimer fluorescence due to triplet–triplet annihilation, and phosphorescence. All four delayed luminescences have been observed for the first time.

1. Introduction

The population of the metastable triplet state T₁ of an aromatic compound in liquid solution in general leads to different types of delayed luminescence: delayed fluorescence due to the generation of excited singlet states Sₙ (n ≥ 1) by triplet–triplet annihilation (TTA) T₁ + T₁ → Sₙ + S₀ and phosphorescence. In this respect the antiaromatic hydrocarbon biphenylene should not behave differently, and both types of delayed luminescence are expected to be observable. In this paper we report the first observation of different kinds of delayed fluorescence and of phosphorescence from biphenylene.

The following known facts about T₁ of biphenylene have been important for the present investigation: (a) By taking the onset of the oxygen-induced absorption band of biphenylene in chloroform for the energy (E) of T₁, \(E(T₁) \approx \frac{hc}{16130 \text{ cm}^{-1}} \) is obtained [1]. \(E(T₁) \) cannot be much lower, since T₁ of biphenylene is quenched by anthracene [2] (T₁: 14700 cm⁻¹). From this value follows that S₁ (≈ 23900 cm⁻¹) and S₂ (≈ 27850 cm⁻¹) of biphenylene are accessible by TTA. (b) Since the quantum yield of intersystem crossing S₁→T₁ is very low, a suitable triplet sensitizer has to be used in all experimental investigations of T₁ of biphenylene [2]. (c) The decay of the sensitized triplet–triplet absorption of biphenylene at room temperature yielded a triplet lifetime \(\approx 100 \mu\text{s} \) [2].

The aim of this investigation has been to detect the following delayed luminescences from biphenylene:

(1) Delayed S₁→S₀ fluorescence. Because of the distinct vibrational structure of the S₁→S₀ fluorescence from biphenylene, a delayed S₁→S₀ fluorescence from biphenylene can be identified with certainty. Hence, also the population of T₁ of biphenylene as the cause of other delayed luminescences of biphenylene can be established with certainty. From the decay of the delayed S₁→S₀ fluorescence a reliable value of the lifetime of T₁ is obtained.

(2) Delayed excimer fluorescence. Biphenylene forms photodimers, and an excimer has been postulated as precursor of the photodimers [3]. For the analogous photodimerization of anthracene it is known that the transformation of the excimer into the photodimer is a thermally activated process. If in this respect biphenylene behaves similarly as anthracene, then – at low temperature and low or moderate solvent viscosity – delayed excimer fluorescence from biphenylene should be observable.

(3) Delayed S₂→S₀ fluorescence. In connection with the conventional estimate of the lifetime of S₂ in the preceding paper [4], the spectrum and the relative quantum yield of this delayed fluorescence have been of interest.

(4) Phosphorescence. According to Peradejordi et al. [5], the long-lived emission from a solution of biphenylene in boric acid glass [6] cannot be assigned to the phosphorescence from biphenylene. Thus the
detection of the genuine phosphorescence from biphenylene has been of interest.

2. Experimental

The experimental technique has in part been described in the preceding paper [4]. In this section we report those additional experimental details which have been important for the detection of a sensitized delayed luminescence from biphenylene.

Sensitizer. The choice of a suitable triplet sensitizer has been important for the success of the present investigation. N-methylcarbazole (NMC) [7] has been suitable on the following grounds:

(a) The triplet energy of NMC is high (24250 cm$^{-1}$ in heptane at 193 K [7]). Hence the triplet energy transfer $T_{1}S_{0} \rightarrow S_{0} + T_{1}$ is practically completely irreversible even under the most unfavourable conditions (high temperature and low relative concentration of biphenylene).

(b) The $0,0$ transition of the $S_{1}S_{0}$ absorption band of NMC (29100 cm$^{-1}$ [7]) is well above the origin of the $S_{0} S_{2}$ absorption band of biphenylene (27850 cm$^{-1}$ [4]). Thus the observation of a delayed $S_{2}S_{0}$ fluorescence from biphenylene is not impeded by the presence of NMC in a sample (due to fluorescence reabsorption).

(c) NMC can be excited with the UV lines of an argon ion laser at 333 nm.

(d) The quantum yield of intersystem crossing $S_{1} \rightarrow T_{1}$ is high enough: $\phi_{isc} \approx 0.58$ [8].

(e) At low temperatures, a solution of biphenylene and NMC in an alkane is sufficiently photostable.

Concentrations. The choice of the concentrations c_{0} of biphenylene and c_{0} of NMC has been critical in several respects. We used $c_{0} \approx 5 \times 10^{-5}$ M and $c_{0} \approx 1.0 \times 10^{-4}$ M.

(a) The average path length of the luminescence light in the sample has been $d \approx 0.15$ cm. This corresponds to an optical density in the maximum of the $S_{0} S_{2}$ absorption band of biphenylene (decadic molar absorption coefficient $\epsilon_{max} \approx 1.2 \times 10^{4}$ M$^{-1}$ cm$^{-1}$ [4]) of $\epsilon_{max} c_{0} d \approx 0.09$, that is, to a maximal fluorescence reabsorption of $\approx 20\%$.

(b) At the excitation wavelength 333 nm, the absorption coefficients are $\epsilon_{0} \approx 3000$ M$^{-1}$ cm$^{-1}$ for biphenylene and $\epsilon_{0} \approx 2000$ M$^{-1}$ cm$^{-1}$ [7] for NMC. Thus, at the chosen concentrations, the relative light absorption $\beta = \epsilon' c_{0}' / (\epsilon c_{0} + \epsilon' c_{0}') \approx 0.57$ by NMC is large.

(c) The total length of the excitation light path in the fluorescence flow cell has been 1.0 cm. For the elimination of delayed silica luminescence it has been important to measure only the light emitted from the central portion (0.6 cm) of the luminescent region of the solution (from 0.2 cm above the lower window to 0.2 cm below the upper window). At the given value of $\epsilon c_{0} + \epsilon' c_{0} \approx 0.35$ cm$^{-1}$, the fraction $\alpha \approx 0.33$ of the total incident laser light is absorbed in the useful central range. This is not far from the maximal fraction $\alpha \approx 0.47$ of excitation light that can be absorbed in the observed central range, which, however, corresponds to a strongly inhomogeneous excitation in the direction of the excitation beam.

Solvent and temperature. The triplet energy transfer from NMC to biphenylene should be much faster than the triplet decay of biphenylene. Thus, in this respect a high value of T / η is desirable, where T is the temperature and η is the viscosity. On the other hand, because of the presumably thermally activated transformation of biphenylene excimers into photodimers [3], a low temperature has been essential for the photostability of the solution. As a compromise, we chose a mixture of isopentane and cyclopentane (7:3) as solvent with low viscosity [9] and the temperature 178 K for the measurement of delayed fluorescence. With $\eta \approx 1.6 \times 10^{-2}$ P at 178 K [9], the Smoluchowski–Stokes–Einstein–Debye equation yields for the rate constant of diffusion-controlled triplet energy transfer $k_{TE} \approx \frac{3}{8} \frac{RT}{\eta} \approx 2.5 \times 10^{12}$ cm3 mol$^{-1}$ s$^{-1}$ $= 2.5 \times 10^{6}$ M$^{-1}$ s$^{-1}$. Thus, at $c_{0} = 5 \times 10^{-5}$ M, the triplet lifetime of NMC should be $\tau \approx (k_{TE} c_{0})^{-1} \approx 8 \mu$s, that is, much shorter than the triplet lifetime $\tau \approx 330 \mu$s of biphenylene at low temperatures (cf. section 3.3).

Chopper. For the discrimination between prompt and delayed luminescences a mechanical chopper has been used. The chopper consists of two disks of 200 mm diameter (effective radius of 90 mm) at a distance of 500 mm on a common shaft in a vacuum-tight housing; each disk has 20 segments and runs between a pair of slits with 2 mm width and 6 mm height. The maximal rotation frequency is 500 Hz. The experiments in the present investigation were performed with a rotation frequency of 50 Hz, which
I. Hertzberg, B. Nickel / Delayed luminescences from biphenylene

Corresponds to a chop frequency $f_{ch} = 1000 \text{ Hz}$. The relation between the chop period $t_{ch} = 1/f_{ch}$, the excitation interval t_{exc}, the observation interval t_{obs}, and the deadtime t_{dead} is $t_{ch} = t_{exc} + t_{obs} + 2t_{dead}$. In the present case we had $t_{exc} = t_{obs} \approx 375 \mu s$ and $t_{dead} \approx 125 \mu s$. With a triplet lifetime $\tau \approx 8 \mu s$ of NMC, the value of t_{dead} corresponds to a decay of the triplet concentration of NMC by a factor of $\approx 10^{-7}$.

Excitation. The sample was excited with an argon ion laser at 333 nm (Spectra Physics 2035, total UV power $\approx 4 \text{ W}$). The spectrum of the delayed fluorescence was measured with an estimated power of the incident excitation light of $\approx 0.5 \text{ W}$, which corresponded to $L \approx 1.4 \times 10^{-6} \text{ einstein s}^{-1}$. The average rate P' of production of T_1 was $P' = L \alpha \beta' \phi_{ac} / \nu$, where ν was the observed excited volume in which the fraction α of the excitation light was absorbed. With an effective laser beam diameter of $\approx 0.5 \text{ mm}$, $\nu \approx 1.2 \text{ mm}^3 = 1.2 \times 10^{-6} \text{ dm}^3$; with $\alpha = 0.33$, $\beta' = 0.57$, and $\phi_{ac} = 0.58$, follows $P' \approx 0.13 \text{ M s}^{-1}$. The average steady-state triplet concentration of NMC during excitation was $\langle \epsilon' \rangle = P' \tau \approx 1.0 \times 10^{-6} \text{ M}$; therefore, depletion of the ground state of NMC was still small ($\approx 1\%$). In a similar way follows that, with a production rate $P \approx P'$ and a lifetime $\tau \approx 330 \mu s$ (cf. section 3.3) of T_1, TTA was the dominant decay process of T_1 and depletion of the ground state of biphenylene was not negligible. Since for the triplet–triplet absorption coefficient ε_T of biphenylene the relation $\varepsilon_T (333 \text{ nm}) \approx 2.5 \varepsilon_T (333 \text{ nm})$ holds [2], the depletion of the ground state of biphenylene leads to a reduction of P'. Thus, neither an increase of the excitation power nor a reduction of the laser-beam diameter should lead to a marked increase of the intensity of the delayed fluorescence. The second point was verified experimentally. The observed intensity of the delayed fluorescence from biphenylene did not sensitively depend on the diameter of the laser beam in the sample.

Phosphorescence. For the measurement of the phosphorescence spectrum and of the triplet lifetime of biphenylene we used a photomultiplier tube with a GaAs photocathode (RCA C31034).

3. Results and discussion

In fig. 1 the spectrum of the delayed luminescence from a solution of biphenylene ($5 \times 10^{-5} \text{ M}$) and N-methylcarbazole ($1.0 \times 10^{-4} \text{ M}$) in isopentane/cyclopentane at 178 K is shown. Two assignments are easy to make. Firstly, the comparison of this spectrum with the spectrum of the prompt fluorescence from biphenylene in 3-methylpentane at 130 K [4] reveals that obviously the delayed $S_1 \rightarrow S_0$ fluorescence from biphenylene is the dominant component of the delayed luminescence. Secondly, the very weak structured band in the near UV can be assigned to the delayed $S_2 \rightarrow S_0$ fluorescence because of its approximate mirror symmetry to the $S_0 \rightarrow S_2$ absorption band – see fig. 2. Two other components of the delayed luminescence are the delayed excimer fluorescence and the phosphorescence. The contribution of the delayed excimer fluorescence is estimated in the following section. The phosphorescence from biphenylene (cf. section 3.3) also contributed to the total delayed luminescence, but its contribution was small under the experimental conditions of the measurement of the spectrum in fig. 1.

3.1. Delayed excimer fluorescence

The intensity distribution of the delayed fluorescence in the spectral range of the $S_2 \rightarrow S_0$ band significantly differs from that of the prompt $S_1 \rightarrow S_0$ fluorescence. In the following we show that this difference
is likely to be due to the contribution of delayed excimer fluorescence to the total delayed fluorescence.

In principle, the determination of this contribution is simple when the spectrum of the monomer fluorescence has vibrational structure (as in the present case) and that of the excimer fluorescence is structureless, and when both spectra do not overlap completely. In this case the excimer band can be obtained by subtracting the spectrum of the prompt monomer fluorescence from that of the total delayed fluorescence, if both spectra have been normalized to equal intensity of the monomer fluorescence. In the present case, however, one meets several difficulties.

Firstly, we did not measure the spectrum of the prompt $S_1 \rightarrow S_0$ fluorescence at the same temperature, with the same spectral resolution and with complete elimination of polarization effects. Secondly, even if this spectrum were known, it may slightly differ from the spectrum of the monomer-like delayed $S_1 \rightarrow S_0$ fluorescence due to TTA. Because of the short lifetime of S_1 (240 ps [11]), the two molecules in the $S_1...S_0$ complex resulting from TTA cannot diffuse far apart. Hence the monomer-like delayed $S_1 \rightarrow S_0$ fluorescence is always emitted by pairs of interacting molecules. The best one can do in this situation is to compare spectra in which the vibrational structure has been deliberately smoothed away.

In fig. 3 we compare the strongly smoothed spectra of the delayed luminescence (fig. 1) and of the prompt fluorescence (fig. 3 of ref. [4]). The two spectra are normalized to equal intensity on the right side, that is, in the spectral range of dominant or exclusive monomer-like delayed luminescence. The difference spectrum of the two spectra should be roughly equal to the spectrum of the delayed excimer fluorescence (we neglect the contribution of the phosphorescence at wavenumbers ≤ 16500 cm$^{-1}$).

According to this subtraction, $\approx 20\%$ of the observed delayed fluorescence are delayed excimer fluorescence. The following points speak for this assignment.

(a) TTA does not require a sandwich conformation of the two interacting molecules in T_1. Therefore, after TTA in general a reorientation of the interacting molecules in the complex $S_1...S_0$ is necessary for the formation of an excimer with a sandwich conformation. An appreciable formation of the excimer is possible only if the condition

$$\tau_{or} \ll \tau_1,$$

is satisfied, there τ_{or} is the longest orientational relaxation time and τ_1 the lifetime of biphenylene in S_1. With $\tau_{or} = \nu_s \eta/k_B T$ [10,4], with the effective volume $\nu_s \approx 5.4 \times 10^{-23}$ cm3 of biphenylene in S_1 [4], and with the viscosity $\eta \approx 1.6 \times 10^{-2}$ P of isopentane/cyclopentane at $T=178$ K [9], we obtain $\tau_{or} \approx 35$ ps <
Thus, efficient secondary formation of an excimer should be possible.

(b) Typically the maximum ($\hat{\nu}_{\text{max}}$) of an excimer fluorescence band is red-shifted relative to the 0,0 transition ($\hat{\nu}_0^0$) of the monomer fluorescence by $\Delta\hat{\nu}_{\text{m},e} = \hat{\nu}_{0,0}^m - \hat{\nu}_{\text{max}}^e \approx 6500 \pm 500 \text{ cm}^{-1}$. For example, the spectra of the delayed fluorescence from three typical aromatic hydrocarbons in methycyclohexane at 193 K yielded the following values of $\Delta\hat{\nu}_{\text{m},e}$: 6400 cm$^{-1}$ for pyrene [12], 6600 cm$^{-1}$ for 1,2-benzanthracene [12], and 6900 cm$^{-1}$ for naphthalene [13]. (note, firstly, that $\hat{\nu}_{\text{max}}^e$ in general increases with increasing temperature and, secondly, that many literature values of $\hat{\nu}_{\text{max}}^e$ (table 7.4 in ref. [14]) do not refer to corrected spectra on a wavenumber scale). For biphenylene, with $\hat{\nu}_{0,0}^m \approx 23900 \text{ cm}^{-1}$ [4] and with $\hat{\nu}_{\text{max}}^e \approx 17000 \pm 1000 \text{ cm}^{-1}$, follows $\Delta\hat{\nu}_{\text{m},e} \approx 6900 \pm 1000 \text{ cm}^{-1}$. Thus, with respect to its maximum, the spectrum of the excimer fluorescence from biphenylene would be normal.

(c) The relative intensity of a delayed excimer fluorescence at low solute concentration depends on six parameters: the probability p for the formation of an excimer after formation of S_1 by TTA, the rate constant k_d for dissociation of the excimer, and the rate constants k_r^m, k_r^e, k_n^m, k_n^e for the radiative (r) and nonradiative (n) decay of the monomer (m) and the excimer (e). When $k_d \ll k_r^e + k_n^e$, the ratio $r_{e,m} = I_{3d}^e/I_{3d}^m$ of the integrated intensities I_{3d}^e of the delayed excimer fluorescence and I_{3d}^m of the delayed monomer fluorescence is given by

$$r_{e,m} \approx p\phi_r/(1 - p)\phi_r^m,$$

(2) where $\phi_r = k_r^e/(k_r^e + k_n^e)$ and $\phi_r^m = k_r^m/(k_r^m + k_n^m)$ are the respective fluorescence quantum yields. With pyrene in methycyclohexane at 193 K [12] $r_{e,m} \approx 1.7$ is observed, and from the values of k_r^m, k_r^e, k_n^m, k_n^e (table 7.3 in ref. [14]) follows $p \approx 0.6$. If we assume for biphenylene a slightly smaller value, $p \approx 0.5$, and $k_d \ll k_r^e + k_n^e$, then from $r_{e,m} \approx 0.25$ follows $k_r^e/k_n^e \approx 0.25 k_r^m/k_n^m$. Since $k_r^m = 1.0 \times 10^6 \text{ s}^{-1}$ [15] is unusually small, one may assume $k_r^e \geq k_r^m$; with this assumption we finally obtain $k_r^e \geq 4 k_n^m \approx 2 \times 10^{10} \text{ s}^{-1}$. This is a reasonable result when internal conversion is the dominant nonradiative decay process of the excimer, since internal conversion in general becomes faster with a decreasing energy gap between the upper and the lower electronic state. Apart from internal conversion, in principle formation of photodimers also contributes to the nonradiative decay of excimers. However, this contribution can be considered as negligible because of the observed relative photostability of the sample at 178 K.

In conclusion, on the basis of the available data, the assignment of part of the delayed fluorescence to delayed excimer fluorescence is reasonable, but additional experiments are desirable. Firstly, the spectra of delayed and prompt fluorescence from biphenylene should be measured under the same experimental conditions and with the same spectral resolution. Secondly, a necessary condition for the assignment of part of the delayed luminescence to delayed excimer fluorescence is that, above the origin band of the phosphorescence, the decay curve of the delayed luminescence does not depend on the observation wavenumber; this should be confirmed experimentally. Thirdly, by choosing a lower temperature, it should be possible to realize the condition $r_{e,m} > r_1$ for the measurement of delayed fluorescence from biphenylene. Under this condition, the contribution of delayed excimer fluorescence to the total delayed fluorescence should be very small. Fourthly, at higher temperatures and under conditions of dominant triplet decay due to TTA, triplet-sensitized formation of photodimers of biphenylene should be observed. Finally, since the observation of prompt excimer fluorescence from biphenylene is practically impossible, the best way to demonstrate the ability of biphenylene to form an excimer would be the synthesis of a suitable biphenylephane* and the measurement of its prompt fluorescence at low temperatures.

3.2. Delayed $S_2\rightarrow S_0$ fluorescence

The observation of a delayed $S_2\rightarrow S_0$ fluorescence is not surprising when S_2 is accessible by TTA [12]. In connection with ref. [4], the relative quantum yield r_{af} of this delayed fluorescence has been of interest. In the calculation of r_{af} we have to take account of the delayed $S_2\rightarrow S_0$ fluorescence hidden under the much stronger delayed $S_1\rightarrow S_0$ fluorescence and of the contribution of delayed excimer fluorescence.

* A biphenylephane is a sandwich pair of two biphenylene molecules that are linked by two or more alkane chains $-(\text{CH}_2)_n-\text{.}$ Typically with $n=2, 3,$ or 4.
We compare the spectrum of the delayed fluorescence in fig. 2 with the spectra of the prompt emission and the hypothetical prompt $S_2 \rightarrow S_0$ fluorescence in fig. 5 of ref. [41]. As representative wavenumbers we choose 22200 cm$^{-1}$, where in both spectra the $S_1 \rightarrow S_0$ fluorescence dominates, and 26200 cm$^{-1}$, where the reabsorption of delayed $S_2 \rightarrow S_0$ fluorescence is negligible. This comparison yields $r_{df} \approx 0.5 r_{pf} \approx 2 \times 10^{-3}$, where r_{pf} is the corresponding intensity ratio of the prompt fluorescence. By taking into account that the relative probability for the observation of monomer-like delayed $S_1 \rightarrow S_0$ fluorescence is $1-p$, we obtain with $p \approx 0.5$ the final value $r_{df} \approx (1-p) r_{df} \approx 1 \times 10^{-3}$. This value has been used in ref. [4] for the estimate of a safe lower limit $\phi_{0} \approx 2 \times 10^{-7}$ of the quantum yield of the prompt $S_2 \rightarrow S_0$ fluorescence. ϕ_{0} may be too low on the following grounds. Firstly, the assumption, that in the singlet channel of TTA the generation of S_2 is the dominant primary process, may not be justified. For example, the direct creation of vibronic states $S_{1,\nu}$ by TTA is possible, and if $S_1(A_2)$ [15] is accessible by TTA, the internal conversion $S_1 \rightarrow S_2$ might bypass S_2. Secondly, relative to $S_{2,\nu}$ (≈ 27850 cm$^{-1}$), in TTA an excess energy $2E(T_1,0) - E(S_{2,\nu}) \approx h \times 4600$ cm$^{-1}$ is available (for the value of $E(T_1,0)$ cf. section 3.3). Therefore, if one assumes that this excess energy reappears with equal probability as vibrational energy in the S_2 molecule and in the S_0 molecule, TTA should yield S_2 with an average vibrational energy of $h \times 2300$ cm$^{-1}$; this would correspond to a prompt fluorescence excited at 30100 cm$^{-1}$ in contrast to the excitation wavenumber ≈ 28500 cm$^{-1}$ [4] of the prompt fluorescence. Since in general intramolecular vibrational relaxation becomes faster with increasing vibrational energy [16], one should expect for S_2 generated by TTA a lower fluorescence quantum yield than for S_2 generated by direct $S_0 \rightarrow S_2$ excitation. Thus $\phi_{0} \approx 2 \times 10^{-7}$ should indeed be a reliable lower limit.

As a referee has pointed out to us, this argument implies the assumption that the emitting molecules have no memory of their excitation route. If the lifetime of S_2 of biphenylene in a liquid solution is of the order of 8 ps [15], this assumption seems to be reasonable.

3.3. Phosphorescence and triplet lifetime

For the measurement of the phosphorescence spectrum of biphenylene, the relative contribution of TTA to the total triplet decay had to be strongly reduced. This was achieved by three changes in the experimental conditions: (a) The diameter of the laser beam in the sample was chosen as large as possible (≈ 1 mm). (2) The excitation power was reduced to less than 1/10 of that used for the measurement of the spectrum of the delayed fluorescence. (3) A lower temperature was chosen (150 K, $\eta \approx 4$ cP).

Under these experimental conditions, the contribution of delayed fluorescence to the total delayed luminescence at 16000 cm$^{-1}$ was $\approx 50\%$. In fig. 4 we show the phosphorescence spectrum of biphenylene; it is the difference spectrum of two spectra measured with low and with high excitation power and normalized to equal intensity of the delayed fluorescence. One might be tempted to assign the origin band a_{0} of this spectrum at 16020 cm$^{-1}$ to the 0,0 transition of the phosphorescence. However, since T_1 is of g symmetry, the 0,0 transition is symmetry forbidden. With the axis notation of fig. 4, the space wavefunction of T_1 is of the symmetry B_{3g} [5,17]. There can be no doubt about the symmetry of T_1, since there is no other triplet state close to T_1 (according to INDO/SCI calculations [17], $T_2(B_{1u})$ is ≈ 7000 cm$^{-1}$ above...
The three triplet substates are $T_{1s}(A)$, $T_{1s}(B_{1g})$, and $T_{1s}(B_{2g})$ [18]. If the coupling non-totally symmetric vibration is of b_{2u} symmetry as in the case of the $S_{0} \rightarrow S_{0}$ fluorescence, then the emitting substate can be either T_{1s} or T_{1s}; T_{1s} would yield a γ-polarized phosphorescence, and T_{1s} an α-polarized.

The b_{2u} vibration with the lowest energy is $\nu_{41}(b_{2u}) = 212 \text{ cm}^{-1}$ [19]. The difference between the origin band a_{0} of the phosphorescence at 16020 cm$^{-1}$ and the origin band a_{0} of the oxygen-induced $S_{0} \rightarrow T_{1}$ absorption at $\approx 16530 \text{ cm}^{-1}$ roughly corresponds to $2\nu_{41}(b_{2u})$ (note that the value 16130 cm$^{-1}$ deduced by Evans [1] refers to the onset and not to the first maximum of the spectrum). Therefore we assign the origin band a_{0} of the phosphorescence to the vibronic transition $T_{1s} \rightarrow S_{0}, v_{41}$, and the origin band of the oxygen-induced absorption to $S_{0} \rightarrow T_{1}, v_{41}$.

The vibrational structure of the phosphorescence spectrum can be analyzed in a similar way as that of the $S_{1} \rightarrow S_{0}$ fluorescence in the preceding paper – see table 1. The main differences are as follows: Firstly, there is no evidence for the contribution of other b_{2u} vibrations than ν_{41}. Secondly, apart from $\nu_{7}(a_{7})$, also the neighboring $\nu_{5}(a_{5})$ seems to be active – cf. table 1. Thirdly, the $T_{1s} \rightarrow S_{0}, v_{41}$ band is observed.

The second and the third differences can be rationalized in terms of bond-order changes. Calculated CC bond-order changes in T_{1} relative to S_{0} [17] are on the average by 22% smaller than those in S_{1} relative to S_{0} [15] (cf. table 4 in the preceding paper). Thus changes of CC bondlengths should be less important for the intensity distribution of the phosphorescence spectrum than for that of the fluorescence spectrum. This is also borne out by the intensity distribution in corresponding progressions of both spectra; for example, in the phosphorescence a_{5} is the strongest vibronic transition, and in the fluorescence a_{3}.

The assignment of the spectrum in fig. 4 to the phosphorescence of biphenylene has been corroborated by the measurement of decay curves of the delayed luminescence at 20800 cm$^{-1}$ (maximum of the uncorrected spectrum of the delayed fluorescence) and at 14550 cm$^{-1}$ (strongest band of the phosphorescence) – see fig. 5. Both decay curves exhibit small but significant deviations from a monoexponential decay. At 20800 cm$^{-1}$ this deviation results from a not yet negligible contribution of TTA to the total triplet decay. At 14550 cm$^{-1}$ the deviation results mainly from the background of delayed fluorescence. The final slopes of both curves correspond rather accurately to the expected ratio of 2:1 and yield as triplet lifetime of biphenylene $\tau = 330 \pm 10 \mu$s.

Table 1
Vibrational assignment of the phosphorescence spectrum of biphenylene in fig. 4. The wavenumbers $\tilde{\nu}$ of the vibronic contour bands were determined with an accuracy of $\pm 10 \text{ cm}^{-1}$. ν_{vib} is the vibrational assignment relative to the false origin a_{0}: $\nu_{5}(a_{5}) = 1462 \text{ cm}^{-1}, \nu_{7}(a_{7}) = 1166 \text{ cm}^{-1}, \nu_{a}(a_{7}) = 1105 \text{ cm}^{-1}, \nu_{5}(a_{5}) = 765 \text{ cm}^{-1}, \nu_{10}(a_{10}) = 395 \text{ cm}^{-1}$ [19]; $\Delta \tilde{\nu} = \tilde{\nu} - \tilde{\nu}(a_{0}) - \tilde{\nu}_{\text{vib}}$.

<table>
<thead>
<tr>
<th>Band</th>
<th>$\tilde{\nu}$ (cm$^{-1}$)</th>
<th>ν_{vib} (cm$^{-1}$)</th>
<th>$\Delta \tilde{\nu}$ (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
<td>(16230)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a_{0}</td>
<td>16020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b_{0}</td>
<td>14550</td>
<td>1462</td>
<td>-8</td>
</tr>
<tr>
<td>c_{0}</td>
<td>13415</td>
<td>1462</td>
<td>-8</td>
</tr>
<tr>
<td>d_{0}</td>
<td>13100</td>
<td>2 x 1462</td>
<td>$+4$</td>
</tr>
<tr>
<td>a_{1}</td>
<td>13785</td>
<td>1462</td>
<td>-8</td>
</tr>
<tr>
<td>b_{1}</td>
<td>13785</td>
<td>1462</td>
<td>-8</td>
</tr>
<tr>
<td>c_{1}</td>
<td>13415</td>
<td>1462</td>
<td>-8</td>
</tr>
<tr>
<td>d_{1}</td>
<td>13100</td>
<td>2 x 1462</td>
<td>$+4$</td>
</tr>
</tbody>
</table>

Fig. 5. Decay curves of delayed luminescence from biphenylene in isopentane/cyclopentane at 150 K: (a) at 20800 cm$^{-1}$ (maximum of the uncorrected spectrum of the monomer-like delayed $S_{1} \rightarrow S_{0}$ fluorescence); (b) at 14550 cm$^{-1}$ (maximum of the phosphorescence).
Our value of the triplet lifetime is greater than that obtained from the decay of the triplet–triplet absorption of biphenylene in cyclohexane at room temperature (≈ 100 μs [2]). This discrepancy may result from a genuine temperature dependence of the intrinsic triplet lifetime of biphenylene. However, we made no attempt to systematically investigate the temperature dependence of the triplet lifetime.

3.4. Summary and conclusions

1) Delayed monomer-like S₁→S₀ fluorescence from biphenylene is the dominant component (≈ 80%) of the sensitized delayed luminescence from a solution of biphenylene and N-methylcarbazole in isopentane/cyclopentane at 178 K.

2) The second strong component of the delayed luminescence (≈ 20%) is assigned to delayed excimer fluorescence from biphenylene.

3) The very weak delayed luminescence in the near UV is interpreted as delayed S₂→S₀ fluorescence from biphenylene.

4) At low triplet concentration of biphenylene, the phosphorescence from biphenylene is the dominant delayed luminescence below 16500 cm⁻¹.

5) The first band of the phosphorescence spectrum at 16020 cm⁻¹ is a false origin. If the phosphorescence is induced by a b₂u vibration, the best value of the triplet energy of biphenylene is \(E(T_{1,0}) \approx h\nu \times 16230 \text{ cm}^{-1} \).

6) At 150 K, the triplet lifetime of biphenylene is ≈ 330 μs.

Acknowledgement

We thank Professor A. Weller for support, Mr. M. Niemeyer for the preparation and purification of biphenylene, Mr. H. Lesche for the preparation of samples, Dr. B. Dick for discussions and for the communication of unpublished results, and Mr. M. Lindrum for valuable comments on the manuscript. We also thank a referee for valuable comments and suggestions.

References