English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

High-Temperature Ferrimagnetism with Large Coercivity and Exchange Bias in the Partially Ordered 3d/5d Hexagonal Perovskite Ba2Fe1.12Os0.88O6

MPS-Authors
/persons/resource/persons199484

Feng,  Hai L.
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126506

Adler,  Peter
Peter Adler, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126838

Schnelle,  Walter
Walter Schnelle, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  Claudia
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126670

Jansen,  Martin
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Feng, H. L., Adler, P., Reehuis, M., Schnelle, W., Pattison, P., Hoser, A., et al. (2017). High-Temperature Ferrimagnetism with Large Coercivity and Exchange Bias in the Partially Ordered 3d/5d Hexagonal Perovskite Ba2Fe1.12Os0.88O6. Chemistry of Materials, 29(2), 886-895. doi:10.1021/acs.chemmater.6b04983.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-5452-F
Abstract
Double perovskite oxides A2BB′O6 combining 3d and 4d or 5d transition metal ions at the B and B′ sites feature a variety of magnetic and magneto-electric properties. Targeting Ba2FeOsO6, we synthesized powder samples of nonstoichiometric Ba2Fe1.12Os0.88O6 by solid-state reaction from the oxides. The crystal structure was investigated by using synchrotron powder X-ray and powder neutron diffraction. In contrast to Ca2FeOsO6 and Sr2FeOsO6, the compound adopts the hexagonal 6L perovskite structure (space group P3̅m1) with partial Fe–Os order at both the face-sharing B2O9 dimer and the corner sharing BO6 transition metal sites. Magnetization, neutron diffraction, and 57Fe Mössbauer spectroscopy results show that Ba2Fe1.12Os0.88O6 develops ferrimagnetic order well above room temperature at TC ≈ 370 K. The nonsaturated magnetization curve at 2 K features a magnetic moment of 0.4 μB per formula unit at 7 T and a pronounced hysteresis with a coercive field of about 2 T. Large exchange bias effects are observed when the magnetization curves are measured after field cooling. The peculiar magnetic properties of Ba2Fe1.12Os0.88O6 are attributed to an inhomogeneous magnetic state formed as a consequence of the atomic disorder. Our results indicate that hexagonal double-perovskite-related oxides are a promising class of compounds for finding new materials with potential applications as hard magnets or in the area of spintronics.