Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Time-reversal-breaking topological phases in antiferromagnetic Sr2FeOsO6 films

MPG-Autoren
/persons/resource/persons133542

Kanungo,  Sudipta
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126916

Yan,  Binghai
Binghai Yan, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dong, X.-Y., Kanungo, S., Yan, B., & Liu, C.-X. (2016). Time-reversal-breaking topological phases in antiferromagnetic Sr2FeOsO6 films. Physical Review B, 94(24): 245135, pp. 1-9. doi:10.1103/PhysRevB.94.245135.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-519B-5
Zusammenfassung
In this work, we studied time-reversal-breaking topological phases as a result of the interplay between antiferromagnetism and inverted band structures in antiferromagnetic double perovskite transition-metal Sr2FeOsO6 films. By combining the first-principles calculations and analytical models, we demonstrate that the quantum anomalous Hall phase and chiral topological superconducting phase can be realized in this system. We find that to achieve time-reversal-breaking topological phases in antiferromagnetic materials, it is essential to break the combined symmetry of time reversal and inversion, which generally exists in antiferromagnetic structures. As a result, we can utilize an external electric gate voltage to induce the phase transition between topological phases and trivial phases, thus providing an electrically controllable topological platform for future transport experiments.