日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Dynamics of memory-guided choice behavior in Drosophila

MPS-Authors
/persons/resource/persons139886

Ichinose,  Toshiharu
Max Planck Research Group: Behavioral Genetics / Tanimoto, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons39094

Tanimoto,  Hiromu
Max Planck Research Group: Behavioral Genetics / Tanimoto, MPI of Neurobiology, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

92_PJA9208B-03.pdf
(出版社版), 2MB

付随資料 (公開)
There is no public supplementary material available
引用

Ichinose, T., & Tanimoto, H. (2016). Dynamics of memory-guided choice behavior in Drosophila. Proceedings of the Japan Academy: Series B, Physical and biological sciences, 92(8), 346-357. doi:10.2183/pjab.92.346.


引用: https://hdl.handle.net/11858/00-001M-0000-002C-633C-C
要旨
Memory retrieval requires both accuracy and speed. Olfactory learning of the fruit fly Drosophila melanogaster serves as a powerful model system to identify molecular and neuronal substrates of memory and memory-guided behavior. The behavioral expression of olfactory memory has traditionally been tested as a conditioned odor response in a simple T-maze, which measures the result, but not the speed, of odor choice. Here, we developed multiplexed T-mazes that allow video recording of the choice behavior. Automatic fly counting in each arm of the maze visualizes choice dynamics. Using this setup, we show that the transient blockade of serotonergic neurons slows down the choice, while leaving the eventual choice intact. In contrast, activation of the same neurons impairs the eventual performance leaving the choice speed unchanged. Our new apparatus contributes to elucidating how the speed and the accuracy of memory retrieval are implemented in the fly brain.