日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Generation and Evolution of Spin-, Valley-, and Layer-Polarized Excited Carriers in Inversion-Symmetric WSe2

MPS-Authors
/persons/resource/persons104552

Bertoni,  Roman
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons61173

Nicholson,  Christopher
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons39255

Waldecker,  Lutz
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons32746

Puppin,  Michele
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22250

Wolf,  Martin
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22028

Rubio,  Angel
Nano-Bio Spectroscopy Group and ETSF, Universidad del Pais Vasco, CFM CSIC-UPV/EHU;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons21497

Ernstorfer,  Ralph
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)

PhysRevLett.117.277201.pdf
(出版社版), 869KB

付随資料 (公開)
There is no public supplementary material available
引用

Bertoni, R., Nicholson, C., Waldecker, L., Hübener, H., Monney, C., De Giovannini, U., Puppin, M., Hoesch, M., Springate, E., Chapman, R. T., Cacho, C., Wolf, M., Rubio, A., & Ernstorfer, R. (2016). Generation and Evolution of Spin-, Valley-, and Layer-Polarized Excited Carriers in Inversion-Symmetric WSe2. Physical Review Letters, 117(27):. doi:10.1103/PhysRevLett.117.277201.


引用: https://hdl.handle.net/11858/00-001M-0000-002C-5588-D
要旨
Manipulation of spin and valley degrees of freedom is a key step towards realizing novel quantum technologies, for which atomically thin transition metal dichalcogenides (TMDCs) have been established as promising candidates. In monolayer TMDCs, the lack of inversion symmetry gives rise to a spin-valley correlation of the band structure allowing for valley-selective electronic excitation with circularly polarized light. Here we show that, even in centrosymmetric samples of 2H-WSe2, circularly polarized light can generate spin-, valley- and layer-polarized excited states in the conduction band. Employing time- and angle-resolved photoemission spectroscopy (trARPES) with spin-selective excitation, the dynamics of valley and layer pseudospins of the excited carriers are investigated. Complementary time-dependent density functional theory (TDDFT) calculations of the excited state populations reveal a strong circular dichroism of the spin-, valley- and layer-polarizations and a pronounced 2D character of the excited states in the K valleys. We observe scattering of carriers towards the global minimum of the conduction band on a sub-100 femtosecond timescale to states with three-dimensional character facilitating inter-layer charge transfer. Our results establish the optical control of coupled spin-, valley- and layer-polarized states in centrosymmetric materials and suggest the suitability of TMDC multilayer materials for valleytronic and spintronic device concepts.