Finding local order in cellular systems

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2017 New J. Phys. 19 011002
(http://iopscience.iop.org/1367-2630/19/1/011002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 141.14.235.248
This content was downloaded on 25/01/2017 at 13:39
Please note that terms and conditions apply.

You may also be interested in:
Anisotropic x-ray scattering and orientation fields in cardiac tissue cells
M Bernhardt, J-D Nicolas, M Eckermann et al.
Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration
Miji Yeo, Hyeongjin Lee and Geun Hyung Kim
Time-series observation of the spreading out of microvessel endothelial cells with AFM
Han Dong, Ma Wanyun, Liao Fulong et al.
Robust fabrication of electrospun-like polymer mats to direct cell behaviour
José Ballester-Beltrán, Myriam Lebourg, Hector Capella et al.
Roadmap on biosensing and photonics with advanced nano-optical methods
Enzo Di Fabrizio, Sebastian Schlücker, Jérôme Wenger et al.
Physically based principles of cell adhesion mechanosensitivity in tissues
Benoit Ladoux and Alice Nicolas
The 2015 super-resolution microscopy roadmap
Stefan W Hell, Steffen J Sahl, Mark Bates et al.
How molecular motors extract order from chaos (a key issues review)
Peter M Hoffmann
Temperature response of the neuronal cytoskeleton mapped via atomic force and fluorescence microscopy
Elise Spedden, David L Kaplan and Cristian Staii
Finding local order in cellular systems

Emanuel Schneck and Wolfgang Wagermaier
Biomaterials Department, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
E-mail: schneck@mpikg.mpg.de and wagermaier@mpikg.mpg.de

Keywords: correlative imaging, scanning x-ray diffraction, fluorescence microscopy

Abstract

Specific local arrangements of molecules are the structural fingerprints of important biological processes in cells and tissues but difficult to access experimentally. In the recent work by Bernhardt et al (2017 New J. Phys. 19 013012) such order on the nanometer scale has been investigated by \textit{in situ} correlation of fluorescence-based cell visualization and nano-focused x-ray diffraction. This approach enables selective diffraction analysis guided by fluorescence imaging and opens new perspectives for the investigation of ordered nanostructures in living matter such as fiber bundles, membrane architectures, and newly-formed biominerals.

Main text

Molecular structures on the length scale of nanometers often govern biological function on much larger scales in the context of cells and tissues. A fundamental challenge in the fields of biophysics and structural biology is that local nanometric order is difficult to identify in heterogeneous cellular surroundings. The crucial molecular details such as functional protein or membrane arrangements are accessible immediately only when biological matter is organized homogeneously over macroscopic length scales. This is because one finds essentially the same molecular-scale structural features all over the sample. Already in the first half of the last century x-ray diffraction studies on macroscopic but spatially homogeneous biomaterials revealed relationships between nanometric structures and macroscopic functions. Examples are pioneering studies on the organization of collagen in rat tail tendon \cite{2}, on myelin sheaths around nerves \cite{3}, and on muscle structure and contraction mechanisms \cite{4}. Notably, a muscle specimen was studied in the very first diffraction experiment exploiting synchrotron radiation \cite{5}. It has become clear, though, that the situation is more difficult for the vast majority of molecular-scale structures in cells and tissues. While a high degree of organization in terms of periodic arrangements and molecular orientations can be found locally on length scales of hundreds of nanometers \cite{6}, the order is lost, when structural information is averaged over larger volumes.

A commonly taken approach to overcome this problem is to use high resolution techniques in scanning mode to characterize the entire volume of biological samples with the aim to come across regions with the molecular-scale structural features of interest. To this end, scanning electron microscopy with focused ion beam milling (Cryo FIB-SEM) \cite{7} and imaging x-ray diffraction \cite{8} are nowadays well-established. In the latter case, micron- or sub-micron sized x-ray beams are moved across the sample, so that at each scanning point a diffraction pattern containing the information on molecular-scale structures is obtained \cite{9}. Such scanning approaches, however, imply a number of limitations. At first, the scanning process is typically too slow to obtain images of living biological specimens. Secondly, the sample fixation needed for scanning is usually invasive and sample damages can be substantial. Finally, most of a data set is useless when entire sample volumes are scanned while features are only locally of interest. A fascinating advancement is correlative imaging, where an imaging technique of moderate resolution such as optical microscopy or x-ray micro-computed tomography (\(\mu\)CT) is used to cover large sample volumes and to identify relevant spots for a localized high-resolution structural probe. This approach, which is fast and minimizes the overall radiation damage to the sample, has been applied successfully to hierarchical structures in biological materials, e.g. to map mineral particle characteristics during the course of healing in rat bone by combining electron microscopy, \(\mu\)CT and scanning x-ray diffraction \cite{10}.
One of the most successful correlation approaches in bioscience is the combination of optical fluorescence and 3D electron microscopy with high sensitivity and spatial precision [11]. In-situ scanning x-ray diffraction in combination with light microscopy has recently been applied even to living cells in microfluidic environments to determine local structural information [12].

Bernhardt et al [11] have now demonstrated the feasibility of in situ correlative imaging between optical fluorescence microscopy and nano-focused x-ray diffraction at the sub-cellular level. Fluorescent labeling technologies are uniquely suited to study dynamic processes in living cells [13]. In the study by Bernhardt et al on actin-based cytoskeleton networks in neonatal cardiac tissue cells from rats the actin was fluorescently labeled and the fiber orientation in terms of direction and degree of orientation was quantified in each volume element from the local x-ray scattering anisotropy. The results showed excellent point-by-point match with the corresponding orientation maps in the fluorescence images (see figure 1). While most of the presented results were obtained with freeze-dried cells, experimental methodology and sample environments for recordings on (initially) alive cells were also established yielding promising first results. Their study lays the ground for the correlative determination of structures that are ordered on the nanometer scale and therefore only accessible by x-ray diffraction. More importantly, the in situ methodology established by Bernhardt et al allows performing x-ray diffraction selectively at the spots that according to the fluorescence image are likely to contain the nanometric structural features relevant for the observed cell function or behavior. Loss of structural information due to radiation damage, in turn, can be minimized, especially with the upcoming highly brilliant, pulsed x-ray sources. Together with fast online x-ray scattering data analysis during the experiment, in situ correlative determination of molecular-scale structures in living cells and tissues becomes possible. Such approaches will be most rewarding when applied to molecular arrangements with a high degree of structural ordering and when the molecular ordering exhibits the signatures of the particular biological function under investigation. Important examples include fiber bundles under tension or exposed to osmotic dehydration [14], naturally occurring membrane stacks during formation and maturation [15], or early stages in the formation of mineralized structures [16]. Ultimately, knowledge of local order may yield valuable insights into living matter.

References

Figure 1. Correlative imaging of the cytoskeleton network in neonatal cardiac tissue cells. (left) Most significant actin fibers as identified by optical fluorescence microscopy. Colors indicate orientation angles. (right) Orientation angles as obtained from the x-diffraction anisotropy, indicated as black lines. Figure adapted from Bernhardt et al [1].
[10] Hoerth R M et al 2015 Registering 2D and 3D imaging data of bone during healing Connective Tissue Res. 56 133–43