English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Isolation and characterization of secretory granules storing a vasoactive intestinal polypeptide-like peptide in Torpedo cholinergic electromotor neurones.

MPS-Authors
/persons/resource/persons14765

Agoston,  D.
Abteilung Neurochemie, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons15005

Dowe,  G.
Department of Molecular Developmental Biology, MPI for biophysical chemistry, Max Planck Society;

/persons/resource/persons16015

Whittaker,  V. P.
Abteilung Neurochemie, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

2383782.pdf
(Publisher version), 3MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Agoston, D., Dowe, G., & Whittaker, V. P. (1989). Isolation and characterization of secretory granules storing a vasoactive intestinal polypeptide-like peptide in Torpedo cholinergic electromotor neurones. Journal of Neurochemistry, 52(6), 1729-1740. doi:10.1111/j.1471-4159.1989.tb07251.x.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-4788-D
Abstract
Abstract: Previous immunocytochemical work showed that the cholinergic electromotor neurones of Torpedo marmorata contain a vasoactive intestinal polypeptide-like immuno-reactivity (VIPLI) that is conveyed to the terminals by axonal transport from the cell bodies where it is presumably synthesized. In extension of this work, we have now succeeded in isolating the VIPLI storage granules from both the terminals and the axons of these neurones and characterizing them morphologically and biochemically. They were readily separated from synaptic vesicles but contained several components in common that had previously been regarded as specific for synaptic vesicles. Among these were a heparan sulphate type of proteoglycan, synaptophysin, and a Mg2+-dependent ATPase. The VIPLI concentration in lobe tissue and the amount of tissue available were both insufficient to permit the isolation of granules from the electromotor cell bodies by the same technique but it was possible to establish the presence of such granules by particle-exclusion chromatography, using the stable markers mentioned above. In contrast to the VIPLI-containing granules, axonal synaptic vesicles differed from their terminal counterparts in having a very low acetylcholine content relative to stable vesicle markers: they presumably fill up on reaching the terminal where they are exposed to higher concentrations of cytoplasmic acetylcholine.