English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study

MPS-Authors
/persons/resource/persons201853

Mouchet,  Anne
Ocean Physics, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Menviel, L., Yu, J., Joos, F., Mouchet, A., Meissner, K., & England, M. (2017). Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study. Paleoceanography, 32, 2-17. doi:10.1002/2016PA003024.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-3BF0-D
Abstract
Atmospheric CO2 was ∼90 ppmv lower at the Last Glacial Maximum (LGM) compared to the late Holocene, but the mechanisms responsible for this change remain elusive. Here we employ a carbon isotope-enabled Earth System Model to investigate the role of ocean circulation in setting the LGM oceanic δ13C distribution, thereby improving our understanding of glacial/interglacial atmospheric CO2 variations. We find that the mean ocean δ13C change can be explained by a 378 ± 88 Gt C(2σ) smaller LGM terrestrial carbon reservoir compared to the Holocene. Critically, in this model, differences in the oceanic δ13C spatial pattern can only be reconciled with a LGM ocean circulation state characterized by a weak (10-15 Sv) and relatively shallow (2000-2500 m) North Atlantic Deep Water cell, reduced Antarctic Bottom Water transport (≤10 Sv globally integrated), and relatively weak (6-8 Sv) and shallow (1000-1500 m) North Pacific Intermediate Water formation. This oceanic circulation state is corroborated by results from the isotope-enabled Bern3D ocean model and further confirmed by high LGM ventilation ages in the deep ocean, particularly in the deep South Atlantic and South Pacific. This suggests a poorly ventilated glacial deep ocean which would have facilitated the sequestration of carbon lost from the terrestrial biosphere and atmosphere. © 2016. American Geophysical Union. All Rights Reserved.