Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

First-principles modeling of molecular crystals: structures and stabilities, temperature and pressure

MPG-Autoren
/persons/resource/persons138032

Hoja,  Johannes
Theory, Fritz Haber Institute, Max Planck Society;
Physics and Materials Science Research Unit, University of Luxembourg;

/persons/resource/persons22175

Tkatchenko,  Alexandre
Theory, Fritz Haber Institute, Max Planck Society;
Physics and Materials Science Research Unit, University of Luxembourg;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hoja, J., Reilly, A. M., & Tkatchenko, A. (2017). First-principles modeling of molecular crystals: structures and stabilities, temperature and pressure. WIREs Computational Molecular Science, 7(1): e1294. doi:10.1002/wcms.1294.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-4386-4
Zusammenfassung
The understanding of the structure, stability, and response properties of molecular crystals at finite temperature and pressure is crucial for the field of crystal engineering and their application. For a long time, the field of crystal-structure prediction and modeling of molecular crystals has been dominated by classical mechanistic force-field methods. However, due to increasing computational power and the development of more sophisticated quantum-mechanical approximations, first-principles approaches based on density functional theory can now be applied to practically relevant molecular crystals. The broad transferability of first-principles methods is especially imperative for polymorphic molecular crystals. This review highlights the current status of modeling molecular crystals from first principles. We give an overview of current state-of-the-art approaches and discuss in detail the main challenges and necessary approximations. So far, the main focus in this field has been on calculating stabilities and structures without considering thermal contributions. We discuss techniques that allow one to include thermal effects at a first-principles level in the harmonic or quasi-harmonic approximation, and that are already applicable to realistic systems, or will be in the near future. Furthermore, this review also discusses how to calculate vibrational and elastic properties. Finally, we present a perspective on future uses of first-principles calculations for modeling molecular crystals and summarize the many remaining challenges in this field.