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SUMMARY

The impact of epigenetics on the differentiation of
memory T (Tmem) cells is poorly defined. We gener-
ated deep epigenomes comprising genome-wide
profiles of DNA methylation, histone modifications,
DNA accessibility, and coding and non-coding RNA
expression in naive, central-, effector-, and terminally
differentiated CD45RA+ CD4+ Tmem cells from blood
and CD69+ Tmem cells from bone marrow (BM-
Tmem). We observed a progressive and prolifera-
tion-associated global loss of DNA methylation in
heterochromatic parts of the genome during Tmem
cell differentiation. Furthermore, distinct gradually
changing signatures in the epigenome and the tran-
1148 Immunity 45, 1148–1161, November 15, 2016 ª 2016 Elsevier I
scriptome supported a linearmodel ofmemory devel-
opment in circulating T cells, while tissue-resident
BM-Tmembranched off with a unique epigenetic pro-
file. Integrative analyses identified candidate master
regulators of Tmem cell differentiation, including the
transcription factor FOXP1. This study highlights the
importance of epigenomic changes for Tmem cell
biology and demonstrates the value of epigenetic
data for the identification of lineage regulators.

INTRODUCTION

CD4+ T helper (Th) cells orchestrate the quality and quantity of

an adaptive immune reaction and contribute to immunity by
nc.
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generating a pool of long-livedmemory (Tmem) cells, which arise

from naive T (Tn) cells after activation by primary antigen

encounter. Tmem cells are per se resting, almost non-dividing

cells, which can be subdivided into subpopulations based on

marker expression, tissue localization and functional properties.

Central memory (Tcm) cells appear most similar to Tn cells with

respect to their ability to recirculate through blood and lymphoid

tissues, the limited effector cytokine commitment, and their high

proliferative capacity (Sallusto et al., 1999). In contrast, T effector

memory (Tem) cells preferentially home to peripheral tissues and

show commitment for the selective production of effector cyto-

kine panels (e.g., IFN-g, IL-4, and IL-17) characteristic of their

functional subtype (Th1, Th2, and Th17, respectively). Their ca-

pacity to expand and differentiate is more limited than that of

Tcm cells—a feature also found for the so far poorly character-

ized CD4+ terminally differentiated CD45RA+ memory (Temra)

cells (Henson et al., 2012), which feature expression of selected

markers of Tn cells (e.g., CD45RA). In addition to these popula-

tions circulating through the blood, recent studies have high-

lighted the importance of tissue-resident memory cells (Carbone

et al., 2013; Schenkel and Masopust, 2014). CD4+ Tmem cells

from the bone marrow (BM-Tmem) have been shown to consti-

tute a major part of long-term memory in mouse and man

(Okhrimenko et al., 2014; Tokoyoda et al., 2009).

The developmental relationship of Tmem cell subsets is not

well defined. The question whether different Tmem subtypes

represent stages in a sequential linear differentiation process,

or whether they branch into different sublineages from early acti-

vation stages is still a subject of controversy (Ahmed et al., 2009;

Flossdorf et al., 2015; Harrington et al., 2008; Kaech and Cui,

2012). Similarly, master regulators controlling the transit from

naive to memory stages, particularly in the human system, are

largely unknown, partially due to the lack of suitable experi-

mental systems.

Epigenetic mechanisms play a key role in cell differentiation

by controlling expression programs that are stable over time

and through cellular generations and hence are prime candi-

dates for the imprinting of stable, heritable expression profiles.

Because Tmem cells do not revert to the naive stage, their

cellular program seems to be permanently switched, pointing

toward epigenetic regulation. Main players in epigenetic regu-

lation are DNA methylation (DNA-meth), histone modifications,

and non-coding RNAs, which together direct the rearrange-

ment of the chromatin to promote or to prevent expression

of the affected genes. Genome-wide analysis of such epige-

netic marks therefore allows for conclusions not only on the

current gene expression status but also facilitates insights

into the history and the future potential of cells. To date only

a few studies on mouse Tmem cells have been published, re-

porting limited datasets (Crompton et al., 2016; Hashimoto

et al., 2013; Komori et al., 2015; Russ et al., 2014). A deep

and systematic genome-wide analysis of the epigenetic land-

scape during human CD4+ Tmem cell differentiation is

currently lacking.

As part of the International Human Epigenome Consortium

(IHEC) and the German Epigenome Programme (DEEP), we

generated comprehensive epigenomic maps of ex vivo isolated

isogenic human CD4+ Tn cells and several Tmem cell subsets

from the blood and the bone marrow to address the question
of whether and how the epigenome contributes to the formation,

maintenance, and function of Tmem cell populations in humans.

Our data support a model of linear differentiation for circulating

human Tmem cells—a topic so far studied only in the murine

system. In addition, we find that many known molecular regula-

tors of Tmem cells are under epigenetic control and that epige-

netic changes point to novel regulator candidates, which are

likely to be involved in Tmem cell differentiation.

RESULTS

Generation of Genome-Wide Epigenetic Datasets of
Human CD4+ Tn Cells and Tmem Cell Subsets
To generate comprehensive epigenomic datasets (i.e., class I

epigenomes according to the IHEC standards) for the key

differentiation stages of human CD4+ Th cells, we sorted

CD4+ Tn, Tcm, Tem, and Temra cells from the peripheral blood

of healthy human donors by flow cytometry (Figure S1A). To

obtain sufficient cell numbers for the subsequent analyses

and to mitigate potential inter-donor variations, we used

pooled samples of 3–10 female donors (Table S1). For Tn,

Tcm, and Tem, analyses of all epigenetic parameters within

one replicate were carried out in parallel, i.e., were derived

from the same genetic donor pool and therefore represent

isogenic samples. For each sample we determined (1)

genome-wide DNA-meth profiles, by whole-genome bisulfite

sequencing (WBGS) or by reduced representation bisulfite

sequencing (RRBS), (2) DNA accessibility maps by nucleo-

some occupancy and methylome sequencing (NOMe-seq),

(3) high-resolution histone modification maps (by Chromatin

Immune-Precipitation sequencing, ChIP-seq) for H3K4me1

( = mono-methylation of lysine 4 on histone 3), H3K4me3,

H3K9me3, H3K27ac, H3K27me3, and H3K36me3 and, (4)

transcriptomes for total RNA (depleted from ribosomal

RNAs), messenger RNAs (mRNAs), long non-coding RNAs

(lncRNAs), micro RNAs (miRNA), and circular RNAs (circRNA)

by deep sequencing of three different RNA libraries (polyade-

nylated RNAs, small RNAs, and total RNAs depleted from

ribosomal RNAs). A selection of these datasets (Figure S1B)

was generated for CD4+ BM-Tmem cells, which were se-

parated into the CD69+ tissue-resident and the circulating

CD69� subsets (Figure S1A).

Progressive Segmented Loss of DNA-Meth Correlates
with Tmem Cell Differentiation
We profiled the DNA-meth landscape in Tn, Tcm, Tem, and

Temra cells using WGBS and observed a strong progressive

loss of DNA-meth in the order Tn-Tcm-Tem-Temra with mean

methylation levels for the entire genome dropping from 84% in

Tn to 67% in Temra (Figure 1A). Loss of methylation predomi-

nantly occurred in large domains of up to several hundreds of ki-

lobases (kb), which were decorated with the repressive histone

marks H3K27me3 and H3K9me3 (Figure 1B and Figure S2A).

Such regions are referred to as ‘‘partially methylated domains,

PMDs’’ and can be identified using established software pack-

ages (‘‘MethylSeekR,’’ Burger et al., 2013). PMDs contrasted

with broad regions that were uniformly fully methylated (‘‘fully

methylated regions,’’ FMRs, by MethylSeekR) and to peaks of

strong consistent de-methylation typically found in CpG islands
Immunity 45, 1148–1161, November 15, 2016 1149
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Figure 1. Global Loss of DNA-Meth in

Tmem Cells Occurs in Large Heterochro-

matic Regions

(A) Circle plots of WGBS data (Tn, Tcm, Tem of

donor pool Hf03, and Temra, Hf05) are shown.

Mean methylation levels in 10 Mb blocks are

depicted as color-coded (white-blue) bars. Heat-

maps (blue-red) indicate the methylation differ-

ence between the adjacent subsets. Total mean

methylation for each cell type is given in the center.

(B) Exemplary genomic view of Tn, Tcm, Tem

(Hf03 samples), and Temra (Hf05), displaying ex-

amples of the genomic segments called by the

MethylSeekR software from WGBS data (indi-

cated with boxes): PMD, partially methylated

domain; FMR, fully methylated region; LMR, low

methylated region; UMR, unmethylated region.

The following tracks are shown (top to bottom,

each for Tn, Tcm, Tem, Temra): Genes annotated

in RefSeq; MethylSeekR-segments; DNA-meth

(WGBS); 6 indicated histone modifications;

total RNA.

(C) Weighted average DNA-meth across the

MethylSeekR segments.

(D) Weighted average methylation across PMDs in

B cells (data from the BLUEPRINT project, see

Accession codes in Experimental Procedures).

Bnai, naive B cells (ERX625136); Bgc, geminal

center B cells (ERX715129); BmemCS, class-

switched memory B cells (ERX625127); Bpc,

plasma cells (ERX301127).

(E) PCA of DNA-meth data (based on WGBS).

CpGs with min. coverage = 5 were considered;

only CpGs with calls in all indicated samples

were used.
(‘‘unmethylated regions,’’ UMRs) and transcriptional control re-

gions (e.g., CpG-low promoters and enhancers, ‘‘lowmethylated

regions,’’ LMRs). PMDs showed the strongest loss of methyl-

ation of all MethylSeekR segments (Figure 1C) and covered up

to 67% of the genome (in Tem cells; Figure S2B). Hence,

PMDs were responsible for the bulk of the observed global

DNA de-methylation in Tmem cell populations. PMD-associated

genes generally showed low expression levels compared to

FMR-associated genes and were fewer in number (Figure S2C).
1150 Immunity 45, 1148–1161, November 15, 2016
We observed a similar segmented loss

of global DNA-meth when re-examining

DNA-meth profiles from B cells pub-

lished by the BLUEPRINT consortium

(Kulis et al., 2015). Here too, PMDs

were the genomic segments that dis-

played progressive loss of DNA-meth

with differentiation into memory B cells

and antibody-secreting plasma cells

(Figure 1D), indicating that this phenom-

enon is shared during lymphocyte

development.

In a principal-component analysis

(PCA), the blood-derived T cell subsets

were placed along the main principal

component 1 (PC1), in the order Tn-

Tcm-Tem-Temra (Figure 1E), which
mirrors the DNA de-methylation in PMDs. Temra cells fell at

the extreme position along PC1 in relation to Tn cells, suggest-

ing that they are the most differentiated population. However,

their inter-donor pool variation was larger compared to other

cell types (Figure S2D). In contrast to Temra cells, BM-Tmem

cells took an ‘‘intermediate’’ position on PC1 close to circu-

lating Tcm and Tem cells, indicating that their epigenetic

imprint toward terminal differentiation is less pronounced

(Figure 1E).



These data show that DNA de-methylation in heterochromatic

parts of the genome accompanies Tmem cell differentiation in

the order of Tn-Tcm-Tem-Temra with BM-Tmem cells clustering

with the Tcm and Tem cell populations.

Comprehensive Transcriptome Analyses Reveal a
Progressive Change with Tmem Cell Differentiation in
the Order of Tn-Tcm-Tem-Temra
We generated full transcriptomes by RNA-seq and determined

expression profiles for total RNA, mRNAs, miRNAs, lncRNA,

and circRNA for Tn cells and Tmem subsets. Our analysis

identified previously described RNAs, as well as previously un-

known RNAs (including 981 novel miRNAs, 173 lncRNAs, and

4,826 candidate circRNAs) and many differentially expressed

RNAs between the T cell subtypes (Tables S2–S4).

We performed PCA on each of these functionally independent

RNA species. Our analysis revealed a consistent pattern with

respect to the main component PC1: for all RNA species, the cell

types fell along this axis in the strict order of Tn-Tcm-Tem-Temra

(Figure 2A). As observed for DNA-meth, BM-Tmem cells took an

intermediate position close to Tcm and Tem cells from the blood

rather than resembling the most terminally differentiated Temra

cell population. For total RNAand lncRNAs,PC2 indicated proper-

ties of Tn that were recapitulated in Temra cells and distinguished

them from the othermemory subsets. Inter-donor pool differences

were generally small, except in the miRNA datasets, in which one

donor pool became separated by PC2 from all others. Thus, the

consistent arrangement of the T cell subtypes on PC1 for all RNA

species indicated a progressive change of the transcriptome

during Tmem cell differentiation (Tn-Tcm-Tem-Temra).

To validate this further, we performed a co-expression

network analysis using the Tn, Tcm, and Tem samples and

focused on the 700 most variable genes or on transcriptional

regulators (TRs). The topology of both networks showed similar

features, with two major gene clusters and a smaller number of

genes connecting these two clusters (Figure 2B). Overlaying

the expression differences of the included genes revealed

that one major cluster was defined by Tn-, the other by Tem

cell-associated genes. Tcm cell-associated genes mainly con-

nected the two main clusters, indicating that this population

indeed represents an intermediate stage of T cell differentiation.

An additional bioinformatic approach was used to evaluate the

mode of differentiation. We used the degree of similarity of the

entire transcriptomesbetweenTn, Tcm, andTemcells andcalcu-

lated the likelihood of possible differentiation models: two linear

models in the order of Tn-Tcm-Tem or Tn-Tem-Tcm and one

bifurcatedmodel inwhichTcmandTemcells arise independently

from Tn. As shown in Figure 2C, the linear Tn-Tcm-Tem model

had the highest cosine similarity score of 0.98 (max = 1) and

was significantly different from the other two models (p < 10�16).

These data show that the transcriptome changes progres-

sively during Tmem cell differentiation in the order of Tn-Tcm-

Tem-Temra.

Chromatin Accessibility and DNA-Meth Analyses
Support a Linear Model of Differentiation for Circulating
Tmem Cells
We wanted to clarify whether the linear relationship between the

Tmem cell subsets (Tn-Tcm-Tem-Temra) apparent from the
DNA-meth and transcriptome data (Figures 1E and 2A), could

also be deduced from epigenetic imprints in the chromatin struc-

ture. For this, we first analyzed genome-wide DNA accessibility

maps, which were generated by NOMe-seq. In a PCA, again a

linear arrangement of the blood-derived T cell subsets in the

order of Tn-Tcm-Tem-Temra was visible on the 2nd most impor-

tant component PC2 (Figure 2D). However, the different popula-

tions were generally less stringently separated. The main

component PC1 separated the replicates Hf03 and Hf04 from

Hf06, which reflected a slight change in the NOMe protocol

between these samples (Figure S2E and Supplemental Experi-

mental Procedures). In addition, when we called accessible

( = nucleosome-depleted) regions (NOMe-peaks) from Tn,

Tcm, and Tem cells and compared their degree of accessibility

between the cellular subtypes, the vast majority of sites gained

or lost accessibility in the order Tn-Tcm-Tem (Figure 2E).

Next, we analyzed global DNA-meth profiles (by RRBS) of

blood- and bone-marrow-derived Tmem cell subsets, with the

latter population subdivided into a tissue-resident CD69+ and a

circulating CD69� fraction (CD69 being a regulator of tissue

egress and marker for tissue-resident cells; Sathaliyawala

et al., 2013). While the CD69� fraction clustered closely to Tcm

and Tem cells from the blood, the CD69+ tissue-resident

BM-Tmem subfraction deviated from its CD69� counterpart,

as well as from blood-derived circulating populations in PC2

(Figure 2F), indicating a major epigenetic imprint for their tissue

residency and specialized function.

Taken together, our results from epigenomic and trans-

criptomic analyses support a linear model of differentiation for

circulating Tmem cells from the blood with the bone-marrow-

resident (CD69+) T cell population deviating early and displaying

a specific epigenetic imprint (Figure S2F).

Changes in DNA-Meth of Transcriptional Control
Elements Are Associated with Tmem Cell
Differentiation
DNA-meth can control the expression of genes, which are

required for the maintenance of lineage identity, as found for

Foxp3 in regulatory T cells (Huehn et al., 2009). This holds true

also for CD4+ Tmem cells, as we found a correlation between

DNA-meth andgene-expression changes,whenweusedan inte-

grative sparse linear regression model measuring DNA-meth in

promoters and gene bodies (Figure S2G). While the highest

impact on gene expression was computed for predicted TF bind-

ing in accessible chromatin sites (NOMe peaks around genes),

DNA-meth had a higher regulation potential than miRNAs.

With our genome-wide epigenetic datasets we therefore

strived to (1) elucidate to what extent DNA-meth is involved in

the regulation of known key Tmem cell checkpoint regulators,

and (2) investigate whether epigenomic data could identify novel

transcriptional regulators of Tmem differentiation.

For this, we called differentially methylated regions (DMRs)

from the WGBS datasets, using the Metilene software (J€uhling

et al., 2016) applying strict selection criteria (min. #CpGs = 5;

min. coverage = 5 reads) and a context-sensitive filtering step

to reduce the contribution of the global de-methylation effect

observed in PMDs (‘‘adaptive filtering,’’ Supplemental Experi-

mental Procedures). This approach resulted in 1670 DMRs

between Tn, Tcm and Tem cells (Table S5) associated with
Immunity 45, 1148–1161, November 15, 2016 1151
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Figure 2. Progressive Changes in the Transcriptomes and in the DNA Accessibility Profiles Support a Linear Differentiation Model for

Circulating Human CD4+ Tmem Subsets

(A) PCAs of different RNA species for Tn, Tcm, Tem, Temra cells from blood, and Tmem cells from the bone-marrow (BM-Tmem).

(B) Co-regulation network based on the top 700 most variable genes in the dataset (top) or based on transcriptional regulators (TRs, bottom). Nodes represent

genes colored according to the corresponding fold-change to mean expression. Links are unweighted and represent significant correlations.

(C) Three possible differentiation models (x axis) were compared using a designed similarity score (y axis), based on the hypothesis, that T cells that are closer to

each other in the differentiation order should showmore similar gene-expression profiles. The plot shows the distribution of similarity scores obtained (error bars

denote SD estimated from 100.000 bootstrap samples). A significantly higher score was obtained for Tn-Tcm-Tem compared to the other models (bootstrapped

t test p value).

(D) PCA of DNA accessibility data (based on NOMe-seq data).

(E) Visualization of the degree of DNA accessibility (quantile-normalized GCHmethylation levels) in consistent nucleosome depleted regions (NOMe-peaks) with a

statistical difference between at least two cell types. Bars denote mean and SD.

(F) PCA of DNA-meth data (based on RRBS data). CpGs with min. coverage of 5 were considered; only CpGs with calls in all indicated samples were used.
970 protein-coding genes. These DMRs seemed functionally

relevant for the regulation of gene expression as most of them

were located within or proximal to genes and were classified

as promoters or enhancers according to their histone modifica-

tion profile (Figure S3A). The majority of these DMRs showed a

continuous (Tn > Tcm > Tem, 47%) or early (Tn > Tcm and
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Tem, 26%) decrease in DNA-meth with Tmem cell generation

(Figure 3A).

Next, we analyzed the correlation between DNA-meth

changes and gene expression and found that 516 of the DMRs

(36%) displayed an inverse correlation to gene expression (Fig-

ure S3B). Such DMRs showed the paradigm mode of gene
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regulation by DNA-meth, in which transcriptional control ele-

ments, such as promoter and enhancers, are repressed by

increased DNA-meth, whereas a loss of DNA-meth at these ele-

ments leads to gene activation. Other DMRs were associated

with genes by location, which (1) were not expressed in any

cell type, (2) the expression of which did not change, or (3) the

expression change correlated to the methylation change (Fig-

ure S3B). These classes of DMRs might serve different functions

such as (1) preparing a locus for gene expression upon additional

environmental signals or locking a locus to prevent alternative

cellular fates, (2) stabilizing otherwise transient gene expression,

or (3) affecting sites acting as silencers. Furthermore, it cannot

be excluded that some DMRs might also act as long-range reg-

ulators for distant genes.

These data show that in addition to the large-scale DNA de-

methylation in PMDs, transcriptional control elements such as

promoters and enhancers are targets of epigenetic regulation

during Tmem cell differentiation.

Known Regulators of Tmem Differentiation
and Function Display DNA-Meth Changes
in Transcriptional Control Regions
To test the assumption that key factors regulating Tmem differ-

entiation and function are under epigenetic control, we extracted

a list of 144 known memory-related genes according to recent

reviews (Figure S3C) and checked for the occurrence of DMRs

in their loci. One quarter of these Tmem cell-related genes dis-

played one or several DMRs (Figure 3B), 95% of which were

associated with a promoter or enhancer histone signature

(Table S5). The largest group lost DNA-meth with progressive

differentiation, which correlated with an increase in expression

(Figure 3B). Among them were genes upregulated upon differ-

entiation from naive to memory states, including surface or intra-

cellular receptors such as PDCD1 (PD-1), IL2RA, and IL2RB,

NOD2, SLAMF1, and TNFRSF1B, but also many transcriptional

regulators such as RUNX3 (Figure 3C, top), NFATC2, BATF,

MAF, TBX21 (T-BET), the CD45-splicing regulator HNRNPLL,

PRDM1 (BLIMP-1), DUSP4, DUSP5, STAM, TOX, and ZEB2. In

a smaller group, increased methylation was linked with

decreased expression. This group included the signature

markers of Tn and Tcm SELL (L-SELECTIN; Figure 3C, middle)

and CCR7, but also several key transcriptional regulators,

namely TCF7 (encodes TCF-1; Figure 3C, bottom), LEF1, and

BACH2, which are known to control the development or mainte-

nance of Tmem cells. In a few genes (FOXO1 and BACH2), loss

of DNA-meth was associated with a decrease in expression;

accordingly, these DMRs might control transcriptional silencers.

In other cases (NOTCH1, SLFN12L, RPTOR, ZBTB32, RBPJ),

a change in methylation was not correlated to changes in

expression. It is of high interest to investigate whether loss of

DNA-meth in genes of this group is not a requirement for expres-
Figure 3. Epigenetic Changes in Known Tmem Cell-Related Genes

(A) Patterns of DNA-meth changes in differentially methylated regions (DMRs

cnt., continuous; inter., intermediate; decr., decrease; incr., increase. Bars deno

(B) List of known Tmem cell-related genes (based on Figure S3C) which display

(C) Examples of DMR-containing Tmem regulator genes (RUNX3, top; SELL, midd

track). The following tracks are shown in each panel (top to bottom, each for Tn

genome segmentation by EpicCSeg (color legend shown on the bottom).
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sion but might act by stabilizing transcription, as was found

previously for the TSDR (CNS2) enhancer region in the FOXP3

locus (Huehn et al., 2009; Polansky et al., 2008).

While a causal role of DNA-meth in the regulation of these

genes remains to be experimentally demonstrated, these find-

ings provide evidence that epigenetic mechanisms contribute

to the developmental regulation of Tmem cells by controlling

the expression of key genes.

Integrative Analyses of Epigenomic and Transcriptomic
Datasets Facilitate the Identification of Functional
Regulator Candidates for Tmem Differentiation
In addition to screening for known developmental regulators,

a reciprocal approach can be applied, in which the occurrence

of DMRs is used to identify novel candidate genes that might

be involved in the control of Tmem differentiation and which un-

dergo direct epigenetic expression control. To this end, 171

DMRs associated with 104 transcriptional regulator genes

were identified (Table S5), indicating that these genes might

contribute to memory development and maintenance. This list

included the gene FOXP1.

While these candidates seem to undergo direct expression

control by DNA-meth, a different class of regulators might gain

or lose functional importance for Tmem cell development and/

or function because their binding sites in target genes are being

exposed (or blocked) by chromatin remodeling. To identify such

‘‘functional epigenetic’’ regulators, we used an alternative

approach combining DNA accessibility data and transcriptomic

data. In this, the impact of a given TF on the transcriptional profile

is determined by the accessibility of its binding sites within pro-

moters and enhancers in its target genes. We used our DNA

accessibility dataset (NOMe-seq data) and computed TF binding

affinities to open chromatin regions (NOMe-peaks). Using a

machine learning approach (Schmidt et al., 2016), we modeled

differential gene expression between T cell subsets based on

these TF binding predictions. In this, the impact of each TF to

the differential transcriptional profile is calculated and TFs with

a strong influence can be extracted. Indeed, comparison of

modeled to observed gene-expression changes, as measured

by RNA-seq, displayed a high accuracy (Figure S4A) supporting

the validity of the approach. A number of regulatory TF candi-

dates for Tn cells and Tmem subsets could be extracted (Fig-

ure 4A and 4B). The lists comprised TFs known to control

Tmem cells, such as BCL6, E2F2, and RUNX3, as well as new

candidates, including AHR, CREB1, ETS1, FLI1, FOXP1,

FOXJ3, NFEL2, NRF1, RFX3, and ZFP161. For a number of these

(e.g., AHR, FLI1, FOXP1, and RUNX3), we also found an associ-

ated DMR in their genes and differential expression during Tmem

cell differentiation (Table S5), indicating that these factors not

only drive transcriptional profiles during Tmem differentiation

but are under epigenetic regulation themselves.
). DMRs changing in the order Tn-Tcm-Tem are shown in the upper row.

te mean and SD.

at least one DMR in their loci (color legend shown on the bottom).

le; TCF7/TCF-1, bottom) showing the location of the identified DMRs (red, top

, Tcm, Tem): Gene annotation from RefSeq; DNA-meth (WGBS); polyA-RNA;
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Figure 4. Selection of Tmem Cell Regulator Candidates Based on Their Predicted Binding Affinities in Open Chromatin Regions of Differen-

tially Expressed Genes

(A) Bar plots showing normalized feature values (y axis) for each TF (x axis) computed using amachine learning approach (based on logistic regression classifiers)

to predict differentially expressed genes in pairwise comparisons of two cellular subtypes. Differences in predicted TF affinities, calculated from open chromatin

regions (NOMe-peaks) in the vicinity of a gene, were used as features in the classification. Large feature values denote a higher impact of the TF on differential

gene expression.

(B) Summarized representation of all selected TFs shown in (A). Filled boxes reflect that a TF (column) has been selected as a feature in the respective comparison

(row). TFs joint by double colons indicate that both TFs are predicted to bind as a complex. The TF FOXP1 is highlighted in gray.
With these analyses we identified several promising new TFs

from epigenomic data which are likely to be involved in Tmem

cell generation and function.

FOXP1 Is an Epigenetically Controlled ‘‘Naive-Keeping’’
Checkpoint Regulator
We found the TF FOXP1 to be a particularly interesting candidate

for Tmem cell regulation due to several reasons: First, a DMR in

the FOXP1 locus displayed increasing DNA-meth, concomitant
with decreased mRNA levels from Tn to Tem (Table S5); second,

FOXP1 was predicted to bind to accessible chromatin regions

and thus contribute to differential gene expression in Tn versus

Tem (Figure 4); and third, FOXP1 was among the top predicted

Tn cell-specific regulators according to an iRegulon (Janky

et al., 2014) analysis (Figure S4B), which is based on the enrich-

ment of TF binding sites in genes contributing to the cell-type-

specific clusters shown in Figure 2B. Therefore, we selected

the TF FOXP1 for a more detailed investigation.
Immunity 45, 1148–1161, November 15, 2016 1155



Ourdatasuggested thatFOXP1might actasan important regu-

lator for theTn-to-Tmem transition.Confirming this,we found that

T cell-specific depletion of Foxp1 protein expression in Foxp1

conditional-deficient mice resulted in loss of the naive CD44low

phenotype inTcells (Figure 5A). Thesefindings togetherwithpub-

lished data (Feng et al., 2011; Wei et al., 2016), support the view

that Foxp1 acts as a ‘‘naive-keeping’’ factor for T cells. Analyses

of DNA-meth in our datasets revealed a DMR in the FOXP1 locus,

which displayed a strong progressive gain of methylation with

differentiation (Tn < Tcm < Tem), which was classified as a selec-

tive active promoter in Tn cells (Figure 5B) based on the displayed

histone modification patterns (by EpiCSeg, Mammana and

Chung, 2015). Indeed, a methylation-sensitive promoter activity

of the FOXP1-DMR was confirmed in luciferase reporter gene

assays in primary human CD4+ T cells, as the FOXP1-DMR was

able to drive luciferase expression when cloned upstream of the

reporter gene in the sense orientation, but not when the orienta-

tion of the FOXP1-DMR was inverted or when the FOXP1-DMR

was methylated (Figure 5C).

Consistent with the occurrence of a Tn cell-specific promoter,

we found the FOXP1 protein expression in humanCD4+ T cells to

be highest in Tn cells and to be decreased in Tcm, Tem, and

Temra cells (Figure 5D). In addition, we found indications in our

RNA-seq datasets for three alternative shorter RNA isoforms,

which started within or directly downstream of the FOXP1-

DMR promoter (Figure S4C). All three isoforms showed preferen-

tial expression in Tn compared to Tcm and Tem cells as

measured by qPCR (Figure 5E). In addition, two of them contain

the complete protein coding sequence (Figure 5E), which we

verified by single molecule real-time sequencing (data not

shown).

Taken together, these results validate FOXP1 as an important

gate-keeper for the naive-to-memory transition, which was iden-

tified by integrative analyses of epigenomic data. In addition,

these analyses also enabled the identification of the epigenetic

control mechanisms regulating differential FOXP1 expression

during Tmem cell generation.

DISCUSSION

This study reveals that the differentiation of Tn cells into distinct

types of memory cells and their long-term maintenance is con-

nected to major epigenetic and transcriptional reprogramming.

This is manifested on a global scale with a genome-wide

segmented loss of DNA-meth during differentiation and in

gene-specific epigenetic changes, which control the stage-spe-

cific expression and/or function of transcriptional regulators.

As our first major finding, we documented a progressive

genome-wide loss of DNA-meth upon transition from the naive

to the memory stages. This de-methylation was most prominent

in ‘‘partially methylated domains’’ (PMDs, Hon et al., 2012; Lister

et al., 2009), a feature shared in memory differentiation of B cells,

but absent during the differentiation of monocytes into macro-

phages (Wallner et al., 2016). PMDs have been associated with

heterochromatic histone signatures and correlate to regions,

which are replicated late during S phase and progressively

lose methylation during strong proliferation (Aran et al., 2011).

Consistent with this, T and B cells, but not monocytes, undergo

extensive proliferation during differentiation as a result of TCR-
1156 Immunity 45, 1148–1161, November 15, 2016
(BCR-) mediated activation. It is therefore feasible that the

observed PMD-associated loss of methylation is a consequence

and a signature of highly proliferative episodes in the history of

these cells.

This interpretation is supported for CD4+ Tmem cells by two

additional observations in our study: (1) the progressive short-

ening of telomere length in the order of Tn-Tcm-Tem (Fig-

ure S5A), and (2) the progressive loss of methylation in PMDs

observed in short-term culture of Tn cells proliferating in vitro

after TCR-mediated activation (Figures S5B and S5C). It remains

to be investigated whether the global de-methylation is just a

tolerated bystander effect of proliferation or whether it consti-

tutes a telomere-independent senescence signal for the cell as

suggested by studies on hematopoietic stem cells under prolif-

erative stress (Beerman et al., 2013).

These findings are relevant for the interpretation and functional

assignment of DNA-meth changes found by gene-specific

DNA-meth assays. Using the epigenomic maps of this study as

a reference, gene-specific differentially methylated regions

(DMRs), which might have (direct) functional relevance for gene

expression, can be discriminated from DMRs in regions that

are likely to represent a mere imprint from the proliferation his-

tory. This discrimination could be of particular relevance when

studying epigenetic changes in T cells isolated from chronic

stimulatory conditions, e.g., inflammatory diseases such as

rheumatoid arthritis or lupus erythematosus where disease-

associated methylation differences have been reported (de

Andres et al., 2015; Javierre et al., 2010).

The second major conclusion from our global epigenomic an-

alyses sheds light onto the still-controversial subject of themode

of memory differentiation of human CD4+ T cells: Do memory

cells originate (1) early after antigen encounter independently

of (but in parallel to) themassive expansion of short-lived effector

cells (parallel or bifurcative differentiation model, Arsenio et al.,

2015) or (2) do they develop from effector cells, which adopt

Tmem stages toward the end of the primary effector phase

(linear model)? While we could not directly address the posi-

tioning of effector cells in relation to memory development with

the present dataset, all our findings are more consistent with

the linear progression model for circulating Tmem cells: We

observed a strong loss of DNA-meth in PMDs upon transition

from Tn to Tcm cells, which was further reduced in the more

differentiated Tem and Temra phenotypes. These data indicate

that Tcm cells would have already passed through a phase of

intense proliferation during initial activation and prior to convert-

ing into resting memory cells. While the parallel model cannot be

formally excluded by this, additional proliferation-independent

datasets were similarly more consistent with the linear model,

including: (1) patterns of DNA-meth at single-DMR resolution,

as well as patterns of DNA accessibility (NOMe-peaks), showed

almost exclusively changes in the order of Tn-Tcm-Tem, (2)

changes in the transcriptomes grouped the samples along a pro-

gressive Tn-Tcm-Tem-Temra cell differentiation axis, (3) network

analysis of co-expressed genes placed the Tcm phenotype as

intermediate to the Tn- and Tem-associated clusters, and (4)

calculation of the similarity of the transcriptomic profiles re-

vealed the linear Tn-Tcm-Tem model as the most likely one.

These conclusions are in part in contrast to conclusions from

restricted expression analyses of murine CD8+ single cells
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(A) CD4+ T cells isolated from spleens of Foxp1+/flox CD4 Cre and Foxp1flox/flox CD4 Cre mice at the age of 6–10 weeks were analyzed by flow cytometry for a

CD44high memory phenotype. Dot plots show CD62L and CD44 surface expression after gating on CD4+ living cells.

(B) Genomic view of the human FOXP1 locus indicating a distinct FOXP1-DMR (red box) gaining DNA-meth from Tn to Tcm to Tem cells. The following tracks are

shown (each for Tn, Tcm, and Tem cells): RefSeq annotation, DNA-meth (WGBS), 6 histone modifications, total RNA coverage and segmentation by EpiCSeg

(red, promoter; green, enhancer; light blue, transcribed; dark blue, repressed).

(C) Luciferase reporter assay testing amethylation-sensitive and orientation-dependent promoter activity of the FOXP1-DMR in primary human CD4+ T cells. The

Firefly luciferase signal was normalized to the signal of the Renilla transfection control and is shown relative to the empty vector control. One representative

experiment performed in triplicates out of two independent experiments is shown.

(D) FOXP1 protein expression in gated human Tn, Tcm, Tem, and Temra cells as assessed by intracellular staining and flow cytometry. Numbers: geometricmean

of the FOXP1 signal. Control staining (contr.) was done using the fluorescently labeled secondary antibody only.

(E) Schematic depiction of different human FOXP1 RNA isoforms. The position of the FOXP1-DMR is shown and the protein coding exons are indicated as boxes.

Three isoforms start within or shortly downstream of the FOXP1-DMR. Their relative expression values are shown for the different cell types (normalized to Tn

cells) measured by qPCR using the indicated primers (arrowheads). One representative experiment performed in technical triplicates (mean and SD) out of two

independent experiments is shown.
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(Arsenio et al., 2015). However, elegant in vivo approaches using

adoptive transfer systems of single murine CD8+ memory cells

(Gerlach et al., 2013a; Graef et al., 2014) also argue in favor of

a linear differentiation model. As similar experiments have not

been conducted for CD4+ cells yet and are impossible in the

human system, our data represent new insights into this topic.

The distinct positioning of Temra cells in the analysis of

genome-wide DNA-meth and transcriptomic data suggests that

they represent a late stage of Tmem differentiation and have un-

dergone extensive proliferation. Alternatively, circulating Temra

cells might represent survivors of prolonged effector proliferation

due to chronic re-activation. This could also explain the

enhanced heterogeneity of the Temra samples, since their epige-

netic imprint might have been specialized over time. Indeed,

increased frequencies of Temra cells have e.g., been reported

in response to persistent CMV infection (Derhovanessian et al.,

2011) and in liver disease, where high Temra cell numbers repre-

sent a significant risk of organ rejection after organ transplanta-

tion (Gerlach et al., 2013b). In contrast, Tmem cells isolated

from the bone marrow did not display a Temra-like epigenetic

phenotype but were positioned between Tcm and Tem cells,

indicating that they have preserved significant expansion and

differentiation capacity. In addition, the CD69+ tissue-resident

subset of BM-Tmem cells displayed a distinct DNA-meth profile,

indicating that acquisition of a resident phenotype, too, is linked

to significant epigenetic reprogramming.

The third pillar of our study is dedicated to the identification of

factors, which drive and/or maintain Tmem cells. In this

endeavor, we identified many non-coding RNAs (ncRNAs),

which are highly and/or differentially expressed in Tn and

Tmem cells. Among them, we identified numerous circRNAs

for which the normal linear host transcript is barely detectable

(Rybak-Wolf et al., 2015), thus, activity of these genes would

have been missed in standard polyA- selected RNA-seq and/

or normal linear splice analysis. These and other ncRNA mole-

cules (lncRNAs, miRNAs) may not only reflect but also induce

functional consequences during Tmem differentiation. The

expression of the ncRNAs appears to be coordinated and finely

tuned during Tmem differentiation with a remarkable link to other

epigenomic changes. Therefore, our dataset provides a deep

basis to further investigate the direct contribution of ncRNAs to

Tmem differentiation and to clarify the mutual regulatory impact

between ncRNAs and chromatin structure.

In addition to RNAs, we report two classes of protein regula-

tors, which include known and potentially new factors controlling

Tmem cell generation and function: (1) TFs, which undergo

epigenetic expression control during Tmem cell formation, and

(2) TFs, which gain or lose functional importance as their binding

sites in target genes are being exposed or closed, respectively,

independently of their own expression change. For the first

class, we found several widely discussed regulators of Tmem

differentiation, which displayed differential DNA-meth in pro-

moter or enhancer regions that anti-correlated with differences

in gene expression levels, following the classical paradigm of

methylation-controlled gene repression. For several of them

(e.g., IL2RA, RUNX3, NFATC2, MAF, BACH2, FOXO1), epige-

netic control in Tmem differentiation has not been reported so

far and awaits experimental confirmation. Interestingly, among

differentially methylated genes was also HNRNPLL, involved in
1158 Immunity 45, 1148–1161, November 15, 2016
alternative splicing of CD45 to the Tmem signature isoform

CD45RO, and the two homing-related receptors, SELL (L-selec-

tin) and CCR7, suggesting that the permanent change in the

recirculation pattern with transition from Tcm to Tem is epigenet-

ically fixed. For others, concordant epigenetic changes have

already been described in murine CD8+ T cells (e.g., BATF,

LEF1, PDCD1, TBX21, TCF7, ZBTB32; Scharer et al., 2013;

Youngblood et al., 2011; Hashimoto et al., 2013).

As for the second class of TFs, we identified FOXP1 as one of

the top candidates, a less well known but functionally confirmed

Tmem regulator in mice (Feng et al., 2011; Wei et al., 2016). Our

present analyses support a similar function in human CD4+

Tmem and additionally unravel the epigenetic control of the

FOXP1 gene. Other prime TF candidates include TFs previously

implicated in Tmem regulation such as RUNX3, E2F2, LEF1,

BCL6, or members of the ELF-, KLF-, or FOXJ- families, as

well as CREB1, ETS-1, and JUN-FOS, which are known to be

involved in multiple cellular processes of differentiation and

activation. Additional interesting candidates include (1) the aryl

hydrocarbon receptor, AHR, which has been implicated in differ-

entiation of CD4+ T cells into pro- or anti-inflammatory subsets

and, hence, to modulate autoimmune diseases in various animal

models (reviewed in Esser et al., 2009; Hanieh, 2014) and (2) the

ets-family member FLI-1, which has been reported to affect

thymic T cell development, TCR signaling, glycosphingolipid

metabolism, and cytokine expression and has been implicated

in autoimmune diseases, too (Richard et al., 2013; Sato et al.,

2014). Others of the top-predicted TFs have not been directly

associated to regulation of Tmem differentiation yet, but are

players in potentially relevant cellular processes, such as intra-

cellular signaling (RFX3, via the RAS-MAPK pathway), metabolic

processes (NRF1 and SREBF1, associated with mTORC1

signaling), and chromatin remodeling (ZFP161, targeting of the

repressive Polycomp complex). Thus, important Tmem cell

properties might be under the control of yet neglected transcrip-

tional regulators that could be revealed by the integrated anal-

ysis of transcriptomic and epigenomic features.

In conclusion, the comprehensive epigenomic analysis of

several human CD4+ Tmem subsets in this study revealed in-

sights into the Tmem differentiation pathway and allowed the

identification of relevant epigenetically controlled transcriptional

regulators. In addition, these data constitute a resource of

normal T cell differentiation, which can serve as a reference for

the identification of altered epigenetic signatures in T cells

from pathological situations such as chronic inflammatory dis-

ease. The challenging task for the future will be the application

of ‘‘epigenetic engineering’’ to achieve therapeutic re-program-

ming of pathogenic T cells or to optimize T cells for their use in

cellular therapy.
EXPERIMENTAL PROCEDURES

T Cell Isolation

PBMCs from blood of healthy female donors or from bone marrow samples of

female donors undergoing hip replacements were isolated and enriched for

CD4+ T cells using the MACS-technology (Miltenyi Biotech). Tn cells and

Tmem subsets were purified by flow cytometry using markers shown in Fig-

ure S1A. Donors gave their written and informed consent prior to participating

in the study (Ethics committee of the Charite Universitaetsmedizin Berlin,

application numbers EA1/116/13 and EA1/105/09).



Epigenomic Data Generation

WGBS was carried out by the combined analysis of two bisulfite-converted

libraries using the pre-bisulfite library protocol (Urich et al., 2015) and the

TruSeq DNA Methylation kit (Illumina, San Diego, USA). RRBS libraries were

prepared as previously published (Boyle et al., 2012). For NOMe-seq, nuclei

of fixed cells were extracted and DNA-meth on GpCmotifs in accessible chro-

matin regions was introduced using the M. CviPI methyltransferase, followed

by WGBS analysis. ChIP-seq for histone modifications was carried out as

previously described (Arrigoni et al., 2016; Kinkley et al., 2016). RNA was ex-

tracted using the miRNeasy Micro Kit (QIAGEN) and three Illumina sequencing

libraries were prepared (small RNA sequencing library, one stranded total

RNA, and one stranded mRNA library). Sequencing was carried out on HiSeq

2000 and HiSeq2500 machines (Illumina). Bioinformatical processing of the

sequencing reads includingmapping to the hg19 reference genome is outlined

in the Supplemental Experimental Procedures section.

DNA Methylation Analyses

Genome segmentation based on WGBS data was performed using

MethylSeekR (Burger et al., 2013). The methylation levels from both strands

were aggregated and weighted average methylation levels were plotted.

WGBS data from B cells (Blueprint consortium) was converted to hg19

coordinates using the liftOver tool (Rosenbloom et al., 2015) and segmentation

was carried out. Differentially methylated regions (DMRs) were predicted

with Metilene (J€uhling et al., 2016) in de-novo mode among sites with at least

53 coverage.

Calling of Accessible Chromatin Region

Nucleosome-depleted regions (NOMe-peaks) were identified by segmenting

the GCH-methylation signal with a binomial hidden Markov model with two

states (1 open/NDR, 0 background) in each sample separately and consistent

NOMe-peaks confirmed in all three replicates were selected.

Identification of mRNAs, miRNAs, lncRNAs, and circRNAs

Expression values for total RNA were quantified using TopHat, Htseq-count,

and DESeq2 (Anders and Huber, 2010). Cufflinks (Trapnell et al., 2010) was

used for the identification of novel lncRNAs. To remove possible coding genes,

we estimated the coding potential of novel transcripts using PhyloCSF (Lin

et al., 2011) and CPAT (Wang et al., 2013). Mature miRNA read counts

were estimated for each sample using miRDeep2 (Friedl€ander et al., 2012)

and miRBase (version 21) annotations. CircRNAs were detected, filtered,

and annotated as described before (Memczak et al., 2013).

Co-Expression Network Construction

Expression data of Tn, Tcm, and Tem cells (3 replicates each) was filtered

using either a list of human transcriptional regulators (TRs) or the 700 most

variable genes (i.e., most significant p values in an ANOVA-based analysis)

to get a reduced expression table of present genes. The group of TRs

contained transcription factors (TFs), co-factors, RNA-binding proteins and

chromatin remodelers originating from the TFCat data base (Fulton et al.,

2009). The expression matrices were loaded into BioLayout Express3D

(Theocharidis et al., 2009) and co-regulation networks were generated

with a Pearson correlation cutoff of 0.9. The predicted gene-gene pairs were

visualized by Cytoscape (Shannon et al., 2003) and fold change expression

values calculated against the group mean were mapped to the network.

Prediction of Transcriptional Regulators Using a Machine-Learning

Approach to Model Differential Gene Expression

Weused amachine-learning approach based on a logistic regression classifier

with the elastic net penalty (Zou and Hastie, 2005) to model differential gene

expression between the Tn, Tcm, and Tem subsets. Because the TF features

for the logistic regression classifier, we used the ratio of TF gene scores, which

were computed using TEPIC (Schmidt et al., 2016). TFs predicted to contribute

to differential gene expression were selected.

Functional Analyses on the TF FOXP1 and the FOXP1-DMR

For the generation of a T cell-specific Foxp1 deletion, a conditional Foxp1

knock-out allelewasgeneratedusingstandardgene targeting techniques inmu-

rine ESCs by introducing loxP sites into intronic regions flanking exons 10–12
(T. Patzelt, O. Gorka, and J. Ruland, manuscript in preparation). The generated

Foxp1-floxed mice were crossed to CD4-Cre animals (Lee et al., 2001).

Intracellular staining of FOXP1 protein in human CD4+ T cells was performed

using the Fixation/Permeabilization Buffer set for intracellular Foxp3 staining

(eBioscience) in a two-step staining procedure (primary FOXP1 antibody

polyclonal #2005, Cell Signaling Technology, DyeLight-649-labeled donkey

anti-rabbit secondary antibody #406406, BioLegend). Samples were acquired

on a BD LSRFortessa instrument (BDBioscience).

The FOXP1-DMR was cloned into the CpG-free Firefly luciferase vector

pCpGL (Klug and Rehli, 2006). Treatment with the M.SssI CpGmethyltransfer-

ase (NEB) allowed selective methylation of the FOXP1-DMR. Ex vivo isolated

CD4+ T cells were TCR-stimulated for 48 hr and transfected with the FOXP1-

DMR Firefly vector and a pRL-TK Renilla control vector (Promega) using the

Neon� Transfection System (Life Technologies). Firefly and Renilla luciferase

activity were assessed using the Dual Luciferase Assay Kit (Promega) after

24 hr. The Firefly luciferase signal was normalized to the Renilla reporter signal.

Expression levels of the FOXP1RNA isoformswere quantified using the plat-

inum SYBR green qPCR superMix-UDG (Thermo Fisher Scientific) on a Step

One instrument (Thermo Fisher Scientific). Relative transcript levels were

normalized to hRPS18. Primer sequences are given in the Supplemental

Experimental Procedures section.

ACCESSION NUMBERS

All sequencing data have been deposited at the European Genome-Phenome

Archive under the accession number EGAS00001001624. WGBS Blueprint

data of B cells are available from the EGA under the accessions

EGAD00001001590, EGAD00001001587, EGAD00001001548, and

EGAD00001001160.
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