Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

A Procedure for Transferable Coarse-Grained Models of Aqueous Polysaccarides

MPG-Autoren
/persons/resource/persons177163

Sauter,  Jörg
Andrea Grafmüller, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121351

Grafmüller,  Andrea
Andrea Grafmüller, Theorie & Bio-Systeme, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Author_Manuscript.pdf
(beliebiger Volltext), 6MB

Ergänzendes Material (frei zugänglich)

2375743_s.pdf
(Ergänzendes Material), 310KB

Zitation

Sauter, J., & Grafmüller, A. (2017). A Procedure for Transferable Coarse-Grained Models of Aqueous Polysaccarides. Journal of Chemical Theory and Computation, 13(1), 223-236. doi:10.1021/acs.jctc.6b00613.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-25B8-4
Zusammenfassung
We present a procedure to obtain coarse-grained models for aqueous polysaccha- ride solutions that are transferable over different degrees of polymerization (DP) and different polysaccharide concentrations based on atomistic Molecular Dynamics simu- lations. This is achieved by a hybrid procedure combining Boltzmann Inversion and the Multiscale Coarse-Graining method. In order to overcome problems that have been previously reported with this approach, namely differences in the aggregation behavior and the end to end distance between the atomistic reference simulation and the coarse- grained simulation, we employ a separation-ansatz and explicit 1-3 and 1-4 non-bonded intra-molecular interactions. This allows the use of the model for long polysaccharides. We demonstrate the transferability over both concentration and DP and evaluate the scope for which the coarse-grained model can be applied, then present a scheme to extend the concentration transferability. In addition, we show that the procedure can be applied for different force fields and demonstrate that it can be applied generate a transferable implicit solvent model as well.