Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONEN
  Dieser Datensatz wurde verworfen!FreigabegeschichteDetailsÜbersicht

Verworfen

Zeitschriftenartikel

Spatially resolved photoconductivity of thin films formed by colloidal octapod-shaped CdSe/CdS nanocrystals

MPG-Autoren
/persons/resource/persons76327

Zhang,  Y.
Dept. Metastable and Low-Dimensional Materials, Max Planck Institute for Intelligent Systems, Max Planck Society;

/persons/resource/persons75726

Kudera,  S.
Dept. New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Max Planck Society;

Externe Ressourcen

(Kein Zugriff möglich)

(Kein Zugriff möglich)

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhang, Y., Miszta, K., Kudera, S., Manna, L., Di Fabrizio, E., & Krahne, R. (2011). Spatially resolved photoconductivity of thin films formed by colloidal octapod-shaped CdSe/CdS nanocrystals. Nanoscale, 3(7), 2964-2970. doi:10.1039/c1nr10251f.


Zusammenfassung
We studied the optical absorption and photoconductive properties of thin films consisting of core–shell octapod-shaped nanocrystals, which consisted of CdS pods that branch out from a CdSe core. The current–voltage characteristics were measured at room and cryogenic temperatures and agreed well with a phenomenological exponential fitting model, from which we could extract the sheet resistance and the average voltage barrier for the charge tunneling between the octapods. The temperature dependence of the photocurrent showed temperature activated behavior above 220 K and a non-Arrhenius exponential (T/T0)n dispersion below 220 K. Furthermore, we mapped the photocurrent generation within the octapod film viascanning photocurrent microscopy, which revealed photocurrent enhancement near micron-size voids and spatial shifts of the photocurrent maxima with bias voltage.