Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Dynamic and steady state current response to light excitation of multilayered organic photodiodes

MPG-Autoren
/persons/resource/persons201065

Fuerst,  J.
International Max Planck Research School, Max Planck Institute for the Science of Light, Max Planck Society;
Quantum Information Processing, Leuchs Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201049

Doehler,  G. H.
Max Planck Research Group, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zaus, E. S., Tedde, S., Fuerst, J., Henseler, D., & Doehler, G. H. (2007). Dynamic and steady state current response to light excitation of multilayered organic photodiodes. JOURNAL OF APPLIED PHYSICS, 101(4): 044501. doi:10.1063/1.2433712.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-6D4C-8
Zusammenfassung
Measurements of current transients are used to gain insight into the mechanism of charge transport and extraction of photodiodes based on bulk heterojunction blends of poly-3-hexyl-thiophene and [6,6]-phenyl C-61 butyric acid methyl ester. It is shown that the implementation of an appropriate hole conducting layer leads to a reduction of the dark current in the reverse direction. It is observed that the dynamic response to light excitation is strongly influenced by the thickness of the hole conducting layer, the light intensity, and the applied bias. Charge accumulation at the interface is assumed to result in the characteristic shape of the transients. The shape of the switch-off transient can be understood qualitatively by an equivalent circuit diagram. (c) 2007 American Institute of Physics.