English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Realization of Vertical and Zigzag Single Crystalline Silicon Nanowire Architectures

MPS-Authors
/persons/resource/persons201021

Broenstrup,  G.
Micro- & Nanostructuring, Technology Development and Service Units, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201040

Christiansen,  S. H.
Christiansen Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
Micro- & Nanostructuring, Technology Development and Service Units, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Sivakov, V. A., Broenstrup, G., Pecz, B., Berger, A., Radnoczi, G. Z., Krause, M., et al. (2010). Realization of Vertical and Zigzag Single Crystalline Silicon Nanowire Architectures. JOURNAL OF PHYSICAL CHEMISTRY C, 114(9), 3798-3803. doi:10.1021/jp909946x.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-6B1B-4
Abstract
Silicon nanowire (SiNW) ensembles, with vertical and zigzag architectures have been realized using wet chemical etching of bulk silicon wafers (p-Si(l 11) and p-Si(100)) with it mask of silver nanoparticles that are deposited by wet electroless deposition. The etching of SiNWs is based oil Subsequent treatments in chemical Solutions Such is 0.02 M aqueous Solutions of silver nitrate (AgNO(3)) followed by 5 M hydrofluoric acid and 30% hydrogen peroxide (H(2)O(2)). The etching of the Si wafers is mediated by the reduction of silver oil the Silicon Surface and in parallel by the oxidation of Si thereby forming SiO(2) which is dissolved ill the HF Surroundings. The morphology of the starting silver (Ag) layer/Ag nanoparticles that form during processing oil the Si wafer surfaces strongly influences the morphology of the SiNW ensembles and homogeneity of the etch profile. Our observations Suggest that the Ag layer/Ag nanoparticles not only catalyze the wet chemical etching of silicon but also strongly catalyze the decomposition of H(2)O(2) so that the temperature of the etching Solution substantially increases (strong exothermic reaction) and thus the etching velocity of bulk material. The morphology and microstructure of single crystalline SiNWs with respect to their crystallographic orientation was investigated by scanning (SEM) and transmission electron (TEM) microscopies and by electron backscatter diffraction (EBSD) in ill SEM. Straight SiNWs Lis well as zigzag SiNWs can be realized depending oil processing peculiarities. The optical characteristics such as absorption, transmission, and reflectance of the different silicon 1D architectures were investigated in an integrating sphere. Strong absorption and less reflection of visible and near-infrared light by the SiNW ensembles Suggest that Such material call he applied in the fields of opto-electronics, photonics and photovoltaics.