Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Understanding Raman-shifting multipeak states in photonic crystal fibers: two convergent approaches

MPG-Autoren
/persons/resource/persons201214

Tran,  Truong X.
Biancalana Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201017

Biancalana,  Fabio
Biancalana Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201159

Podlipensky,  Alexander
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201171

Russell,  Philip St J.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hause, A., Tran, T. X., Biancalana, F., Podlipensky, A., Russell, P. S. J., & Mitschke, F. (2010). Understanding Raman-shifting multipeak states in photonic crystal fibers: two convergent approaches. OPTICS LETTERS, 35(13), 2167-2169.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-6AE9-9
Zusammenfassung
In this Letter we give theoretical explanations for the recent observations of the excitation of Raman-shifting pulse pairs in solid-core photonic crystal fibers. The formation of these pairs is surprisingly common in the deep anomalous dispersion regime of a large variety of highly nonlinear optical fibers, away from zero group-velocity dispersion points. We have developed two different theoretical models, which agree very well in their conclusions. A qualitative and a quantitative explanation of pair formation is provided, and the existence of multipeak states is predicted. (C) 2010 Optical Society of America