Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Emergence of Geometrical Optical Nonlinearities in Photonic Crystal Fiber Nanowires

MPG-Autoren
/persons/resource/persons201017

Biancalana,  Fabio
Biancalana Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201214

Tran,  Truong X.
Biancalana Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201202

Stark,  Sebastian
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201182

Schmidt,  Markus A.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201171

Russell,  Philip St J.
Russell Division, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Biancalana, F., Tran, T. X., Stark, S., Schmidt, M. A., & Russell, P. S. J. (2010). Emergence of Geometrical Optical Nonlinearities in Photonic Crystal Fiber Nanowires. PHYSICAL REVIEW LETTERS, 105(9): 093904. doi:10.1103/PhysRevLett.105.093904.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-6AC1-1
Zusammenfassung
We demonstrate analytically and numerically that a subwavelength-core dielectric photonic nanowire embedded in a properly designed photonic crystal fiber cladding shows evidence of a previously unknown kind of nonlinearity (the magnitude of which is strongly dependent on the waveguide parameters) which acts on solitons so as to considerably reduce their Raman self-frequency shift. An explanation of the phenomenon in terms of indirect pulse negative chirping and broadening is given by using the moment method. Our conclusions are supported by detailed numerical simulations.