English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Observation of spontaneous Brillouin cooling

MPS-Authors
/persons/resource/persons201125

Marquardt,  Florian
Marquardt Group, Associated Groups, Max Planck Institute for the Science of Light, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bahl, G., Tomes, M., Marquardt, F., & Carmon, T. (2012). Observation of spontaneous Brillouin cooling. NATURE PHYSICS, 8(3), 203-207. doi:10.1038/NPHYS2206.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-68ED-2
Abstract
Although bolometric- and ponderomotive-induced deflection of device boundaries are widely used for laser cooling, the electrostrictive Brillouin scattering of light from sound was considered an acousto-optical amplification-only process(1-7). It was suggested that cooling could be possible in multi-resonance Brillouin systems(5-8) when phonons experience lower damping than light(8). However, this regime was not accessible in electrostrictive Brillouin systems(1-3,5,6) as backscattering enforces high acoustical frequencies associated with high mechanical damping(1). Recently, forward Brillouin scattering(3) in microcavities(7) has allowed access to low-frequency acoustical modes where mechanical dissipation is lower than optical dissipation, in accordance with the requirements for cooling(8). Here we experimentally demonstrate cooling via such a forward Brillouin process in a microresonator. We show two regimes of operation for the electrostrictive Brillouin process: acoustical amplification as is traditional and an electrostrictive Brillouin cooling regime. Cooling is mediated by resonant light in one pumped optical mode, and spontaneously scattered resonant light in one anti-Stokes optical mode, that beat and electrostrictively attenuate the Brownian motion of the mechanical mode.