Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Spectroscopy and microscopy of single molecules in nanoscopic channels: spectral behavior vs. confinement depth

MPG-Autoren

Gmeiner,  Benjamin
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201127

Maser,  Andreas
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201220

Utikal,  Tobias
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201072

Goetzinger,  Stephan
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201175

Sandoghdar,  Vahid
Sandoghdar Division, Max Planck Institute for the Science of Light, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gmeiner, B., Maser, A., Utikal, T., Goetzinger, S., & Sandoghdar, V. (2016). Spectroscopy and microscopy of single molecules in nanoscopic channels: spectral behavior vs. confinement depth. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 18(29), 19588-19594. doi:10.1039/c6cp01698g.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002D-6299-0
Zusammenfassung
We perform high-resolution spectroscopy and localization microscopy to study single dye molecules confined to nanoscopic dimensions in one direction. We provide the fabrication details of our nanoscopic glass channels and the procedure for filling them with organic matrices. Optical data on hundreds of molecules in different channel depths show a clear trend from narrow stable lines in deep channels to broader linewidths in ultrathin matrices. In addition, we observe a steady blue shift of the center of the inhomogeneous band as the channels become thinner. Furthermore, we use super-resolution localization microscopy to correlate the positions and orientations of the individual dye molecules with the lateral landscape of the organic matrix, including cracks and strain-induced dislocations. Our results and methodology are useful for a number of studies in various fields such as physical chemistry, solid-state spectroscopy, and quantum nano-optics.