Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Controlling heat and particle currents in nanodevices by quantum observation

MPG-Autoren
/persons/resource/persons200531

Rodríguez-Rosario,  César A.
Nano-Bio Spectroscopy Group and ETSF, Department of Materials Science, Universidad del País Vasco UPV/EHU, E-20018 San Sebastián, Spain;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science and Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Germany;

/persons/resource/persons22028

Rubio,  Angel
Nano-Bio Spectroscopy Group and ETSF, Department of Materials Science, Universidad del País Vasco UPV/EHU, E-20018 San Sebastián, Spain;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science and Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Germany;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1611.08471.pdf
(Preprint), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Biele, R., Rodríguez-Rosario, C. A., Frauenheim, T., & Rubio, A. (in preparation). Controlling heat and particle currents in nanodevices by quantum observation.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-1573-8
Zusammenfassung
We demonstrate that in a standard thermo-electric nanodevice the current and heat flows are not only dictated by the temperature and potential gradient but also by the external action of a local quantum observer that controls the coherence of the device. Depending on how and where the observation takes place the direction of heat and particle currents can be independently controlled. In fact, we show that the current and heat flow can go against the natural temperature and voltage gradients. Dynamical quantum measurement offers new possibilities for the control of quantum transport far beyond classical thermal reservoirs. Through the concept of local projections, we illustrate how we can create and directionality control the injection of currents (electronic and heat) in nanodevices. This scheme provides novel strategies to construct quantum devices with application in thermoelectrics, spintronic injection, phononics, and sensing among others. In particular, highly efficient and selective spin injection might be achieved by local spin projection techniques.