Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Causal interrogation of neuronal networks and behavior through virally transduced ivermectin receptors

MPG-Autoren
/persons/resource/persons123308

Obenhaus,  Horst A.
Rolf Sprengel Group, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons123233

Bertocchi,  Ilaria
Rolf Sprengel Group, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95596

Tang,  Wannan
Rolf Sprengel Group, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons118039

Betz,  Heinrich
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons95439

Sprengel,  Rolf
Rolf Sprengel Group, Max Planck Institute for Medical Research, Max Planck Society;
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Obenhaus, H. A., Rozov, A., Bertocchi, I., Tang, W., Kirsch, J., Betz, H., et al. (2016). Causal interrogation of neuronal networks and behavior through virally transduced ivermectin receptors. Frontiers in Molecular Neuroscience, 9: 75, pp. 1-17. doi:10.3389/fnmol.2016.00075.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-150E-0
Zusammenfassung
The causal interrogation of neuronal networks involved in specific behaviors requires the spatially and temporally controlled modulation of neuronal activity. For long-term manipulation of neuronal activity, chemogenetic tools provide a reasonable alternative to short-term optogenetic approaches. Here we show that virus mediated gene transfer of the ivermectin (IVM) activated glycine receptor mutant GlyRα1 (AG) can be used for the selective and reversible silencing of specific neuronal networks in mice. In the striatum, dorsal hippocampus, and olfactory bulb, GlyRα1 (AG) promoted IVM dependent effects in representative behavioral assays. Moreover, GlyRα1 (AG) mediated silencing had a strong and reversible impact on neuronal ensemble activity and c-Fos activation in the olfactory bulb. Together our results demonstrate that long-term, reversible and re-inducible neuronal silencing via GlyRα1 (AG) is a promising tool for the interrogation of network mechanisms underlying the control of behavior and memory formation.