Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The Piconewton Force Awakens: Quantifying Mechanics in Cells

MPG-Autoren
/persons/resource/persons127894

Freikamp,  Andrea
Grashoff, Carsten / Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons128315

Cost,  Anna-Lena
Grashoff, Carsten / Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78025

Grashoff,  Carsten
Grashoff, Carsten / Molecular Mechanotransduction, Max Planck Institute of Biochemistry, Max Planck Society;

Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Freikamp, A., Cost, A.-L., & Grashoff, C. (2016). The Piconewton Force Awakens: Quantifying Mechanics in Cells. Trends in Cell Biology, 26(11), 838-847. doi:10.1016/j.tcb.2016.07.005.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-19AC-0
Zusammenfassung
The development of calibrated Forster resonance energy transfer (FRET)-based tension sensors has allowed the first analyses of mechanical processes with piconewton (pN) sensitivity in cells. Here, we introduce the working principle of this emerging microscopy method and discuss how it has been utilized to obtain quantitative insights into the mechanisms of intracellular force transduction in cell-matrix adhesions, cell-cell junctions, and at the cell cortex. These examples demonstrate that genetically encoded tension sensors are powerful tools to unravel force transduction mechanisms, but also indicate current limitations. We propose that further technical improvements are needed to develop a truly molecular understanding of mechanobiological processes in cells and tissues.