English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A one donor–two acceptor lipid bilayer FRET assay based on asymmetrically labeled liposomes.

MPS-Authors
/persons/resource/persons15985

Walla,  P. J.
Research Group of Biomolecular Spectroscopy and Single-Molecule Detection, MPI for biophysical chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lin, C. C., Hsu, H. F., & Walla, P. J. (2016). A one donor–two acceptor lipid bilayer FRET assay based on asymmetrically labeled liposomes. Journal of Physical Chemistry B, 120(43), 11085-11092. doi:10.1021/acs.jpcb.6b05654.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-111D-C
Abstract
The fusion of two opposing membranes is essential in biological functions such as fertilization, viral entry, membrane trafficking and synaptic transmission. Before the membrane bilayers are fully connected, at some stage a hemifusion intermediate-when the outer leaflets are merged but not the inner leaflets-is formed. However, the position of hemifusion in the energy landscape and the duration of it vary and have not been fully mapped out. To date, there has not been a way to differentiate lipid mixing of the two leaflets directly in a single experiment. Herein we demonstrate labeling of the outer and inner leaflets with different fluorophores, which can be distinguished by their fluorescence lifetimes. As a proof of concept, the asymmetrically labeled liposomes were used as acceptor liposomes in a novel one donor-two acceptor Forster resonance energy transfer (FRET) assay to monitor membrane fusion reactions mediated by the synaptic proteins soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) in microfluidic devices. Initial hemifusion was clearly indicated by the acceptor fluorescence lifetime originating solely from FRET acceptors on the outer leaflet (Oregon Green 488; tau(Fl) similar to 4.8 ns). Progression to full fusion was then indicated by the significantly increasing lifetime contribution from acceptors on the inner leaflet (nitrobenzoxadiazole; tau(Fl) similar to 6.7 ns). The new labeling strategy creates many possibilities in the design of bulk and single-molecule experiments.