English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x

MPS-Authors
/persons/resource/persons126742

Mackenzie,  A. P.
Andrew Mackenzie, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Hamidian, M. H., Edkins, S. D., Joo, S. H., Kostin, A., Eisaki, H., Uchida, S., et al. (2016). Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x. Nature, 532(7599), 343-347. doi:10.1038/nature17411.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-0AD6-F
Abstract
The quantum condensate of Cooper pairs forming a superconductor was originally conceived as being translationally invariant. In theory, however, pairs can exist with finite momentum Q, thus generating a state with a spatially modulated Cooper-pair density(1,2). Such a state has been created in ultracold Li-6 gas(3) but never observed directly in any superconductor. It is now widely hypothesized that the pseudogap phase(4) of the copper oxide superconductors contains such a 'pair density wave' state(5-21). Here we report the use of nanometre-resolution scanned Josephson tunnelling microscopy(22-24) to image Cooper pair tunnelling from a d-wave superconducting microscope tip to the condensate of the superconductor Bi2Sr2CaCu2O8+x. We demonstrate condensate visualization capabilities directly by using the Cooper-pair density variations surrounding zinc impurity atoms(25) and at the Bi2Sr2CaCu2O8+x crystal supermodulation(26). Then, by using Fourier analysis of scanned Josephson tunnelling images, we discover the direct signature of a Cooper-pair density modulation at wavevectors Q(P) approximate to (0.25, 0)2 pi/a(0) and (0, 0.25)2 pi/a(0) in Bi2Sr2CaCu2O8+x. The amplitude of these modulations is about five per cent of the background condensate density and their form factor exhibits primarily s or s' symmetry. This phenomenology is consistent with Ginzburg-Landau theory(5,13,14) when a charge density wave(5,27) with d-symmetry form factor(28-30) and wavevector Q(C) = Q(P) coexists with a d-symmetry superconductor; it is also predicted by several contemporary microscopic theories for the pseudogap phase(18-21).