English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Catechol, a major component of smoke, influences primary root growth and root hair elongation through reactive oxygen species-mediated redox signaling

MPS-Authors
/persons/resource/persons199274

Wang,  Ming
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4162

Schoettner,  Matthias
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons59523

Xu,  Shuqing
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons4081

Paetz,  Christian
Research Group Biosynthesis / NMR, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons199277

Wilde,  Julia
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;
IMPRS on Ecological Interactions, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3786

Baldwin,  Ian Thomas
Department of Molecular Ecology, Prof. I. T. Baldwin, MPI for Chemical Ecology, Max Planck Society;

/persons/resource/persons3899

Groten,  Karin
MPI for Chemical Ecology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Wang, M., Schoettner, M., Xu, S., Paetz, C., Wilde, J., Baldwin, I. T., et al. (2017). Catechol, a major component of smoke, influences primary root growth and root hair elongation through reactive oxygen species-mediated redox signaling. New Phytologist, 213(4), 1755-1770. doi:10.1111/nph.14317.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002C-0898-5
Abstract
Nicotiana attenuata germinates from long-lived seedbanks in native soils after fires. Although smoke signals have been known to break seed dormancy, whether they also affect seedling establishment and root development remains unclear. In order to test this, seedlings were treated with smoke solutions. Seedlings responded in a dose-dependent manner with significantly increased primary root lengths, due mainly to longitudinal cell elongation, increased numbers of lateral roots and impaired root hair development. Bioassay-driven fractionations and NMR were used to identify catechol as the main active compound for the smoke-induced root phenotype. The transcriptome analysis revealed that mainly genes related to auxin biosynthesis and redox homeostasis were altered after catechol treatment. However, histochemical analyses of reactive oxygen species (ROS) and the inability of auxin applications to rescue the phenotype clearly indicated that highly localized changes in the root's redox-status, rather than in levels of auxin, are the primary effector. Moreover, H2O2 application rescued the phenotype in a dose-dependent manner. Chemical cues in smoke not only initiate seed germination, but also influence seedling root growth; understanding how these cues work provides new insights into the molecular mechanisms by which plants adapt to post-fire environments.