Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Systems analysis of metabolism and the transcriptome in Arabidopsis thaliana roots reveals differential co-regulation upon iron, sulfur and potassium deficiency

MPG-Autoren
/persons/resource/persons4116

Reichelt,  Michael
Department of Biochemistry, Prof. J. Gershenzon, MPI for Chemical Ecology, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Forieri, I., Sticht, C., Reichelt, M., Gretz, N., Hawkesford, M. J., Malagoli, M., et al. (2017). Systems analysis of metabolism and the transcriptome in Arabidopsis thaliana roots reveals differential co-regulation upon iron, sulfur and potassium deficiency. Plant, Cell and Environment, 40(1), 95-107. doi:10.1111/pce.12842.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002C-087D-3
Zusammenfassung
Deprivation of mineral nutrients causes significant retardation of plant growth. This retardation is associated with nutrient specific and general stress-induced transcriptional responses. In this study we adjusted the external supply of iron, potassium and sulfur to cause the same retardation of shoot growth. Nevertheless, limitation by individual nutrients resulted in specific morphological adaptations and distinct shifts within the root metabolite fingerprint. The metabolic shifts affected key metabolites of primary metabolism and the stress-related phytohormones, jasmonic-, salicylic- and abscisic acid. These phytohormone signatures contributed to specific nutrient deficiency-induced transcriptional regulation. Limitation by the micronutrient iron caused the strongest regulation and affected 18 % of the root transcriptome. Only 130 genes were regulated by all nutrients. Specific co-regulation between the iron and sulfur metabolic routes upon iron or sulfur deficiency was observed. Interestingly, iron deficiency caused regulation of a different set of genes of the sulfur assimilation pathway compared to sulfur deficiency itself, which demonstrates the presence of specific signal-transduction systems for the cross-regulation of the pathways. Combined iron and sulfur starvation experiments demonstrated that a requirement for a specific nutrient can overrule this cross-regulation. The comparative metabolomics and transcriptomics approach used dissected general-stress from nutrient-specific regulation in roots of Arabidopsis.