Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Supercontinuum Generation in Naturally Occurring Glass Sponges Spicules

MPG-Autoren
/persons/resource/persons126855

Simon,  Paul
Paul Simon, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ehrlich, H., Maldonado, M., Parker, A. R., Kulchin, Y. N., Schilling, J., Koehler, B., et al. (2016). Supercontinuum Generation in Naturally Occurring Glass Sponges Spicules. Advanced Optical Materials, 4(10), 1608-1613. doi:10.1002/adom.201600454.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-BCFB-C
Zusammenfassung
The complex process of supercontinuum generation (SG) is known to be exploitable for designing spatially coherent white light sources emitting light simultaneously in the ultraviolet, visible, and infrared ranges. Herein the first natural material able to generate in laboratory conditions a supercontinuum similar to those known from man-made photonic crystal fibers is described. The ability resides in siliceous 20-50 cm long spicules of the glass sponge Sericolophus hawaiicus. By shedding into the spicules optical peak intensities ranging from 1 to 100 TW cm(-2) the generation of a SG is revealed. The SG involves wavelengths between 650 and 900 nm and shows a maximum spectral spread for excitation at a wavelength of 750 nm. It is hypothesized that the SG is favored by spicules being a biocomposite that incorporates together isotopically pure biogenic silica (delta(30) Si = -3.28) and 15.2 +/- 1.3 mu g N -acetyl-glucosamine (chitin) per mg of silica. The internal organization of these spicules is distinguished by a solid silica core with a 1 mu m wide axial channel as well as a highly ordered silica-chitin composite. Such a composition and organization pattern may be of potential interest for the design of low temperature synthesis of future materials for light guidance.