Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Systematic construction of density functionals based on matrix product state computations

MPG-Autoren
/persons/resource/persons60673

Lubasch,  Michael
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;
Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK;

/persons/resource/persons21304

Appel,  Heiko
Theory, Fritz Haber Institute, Max Planck Society;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons22028

Rubio,  Angel
Theory, Fritz Haber Institute, Max Planck Society;
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons60441

Cirac,  J. Ignacio
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;

/persons/resource/persons60403

Bañuls,  Mari-Carmen
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

5237.pdf
(Verlagsversion), 881KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lubasch, M., Fuks, J. I., Appel, H., Rubio, A., Cirac, J. I., & Bañuls, M.-C. (2016). Systematic construction of density functionals based on matrix product state computations. New Journal of Physics, 18(8): 083039. doi:10.1088/1367-2630/18/8/083039.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-BC12-7
Zusammenfassung
We propose a systematic procedure for the approximation of density functionals in density functional theory that consists of two parts. First, for the efficient approximation of a general density functional, we introduce an efficient ansatz whose non-locality can be increased systematically. Second, we present a fitting strategy that is based on systematically increasing a reasonably chosen set of training densities. We investigate our procedure in the context of strongly correlated fermions on a one-dimensional lattice in which we compute accurate training densities with the help of matrix product states. Focusing on the exchange-correlation energy, we demonstrate how an efficient approximation can be found that includes and systematically improves beyond the local density approximation. Importantly, this systematic improvement is shown for target densities that are quite different from the training densities.