Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Prediction of the quantum spin Hall effect in monolayers of transition-metal carbides MC (M. =. Ti, Zr, Hf)

MPG-Autoren
/persons/resource/persons192591

Zhou,  Liujiang
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons198798

Shi,  Wujun
Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons179670

Sun,  Yan
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126601

Felser,  C.
Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126916

Yan,  Binghai
Binghai Yan, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhou, L., Shao, B., Shi, W., Sun, Y., Felser, C., Yan, B., et al. (2016). Prediction of the quantum spin Hall effect in monolayers of transition-metal carbides MC (M. =. Ti, Zr, Hf). 2D Materials, 3(3): 035022, pp. 1-9. doi:10.1088/2053-1583/3/3/035022.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-BC68-7
Zusammenfassung
We report the existence of the quantum spin Hall effect (QSHE) in monolayers of transition-metal carbides MC(M. =. Zr, Hf). Under ambient conditions, the ZrC monolayer exhibits QSHE with an energy gap of 54 meV, in which topological helical edge states exist. Enhanced d(xy)-d(xy) interaction induces band inversion, resulting in nontrivial topological features. By applying in-plane strain, the HfC monolayer can be tuned from a trivial insulator to a quantum spin Hall insulator with an energy gap of 170 meV, three times that of the ZrC monolayer. The strong stability of MC monolayers provides a new platform for QSHE and spintronic applications.