Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Strong pinning of vortices by antiferromagnetic domain boundaries in CeCo(In1-xCdx)5

MPG-Autoren
/persons/resource/persons138493

Jang,  D.-J.
Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126797

Pedrero,  L.
Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126548

Brando,  M.
Manuel Brando, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jang, D.-J., Pedrero, L., Pham, L. D., Fisk, Z., & Brando, M. (2016). Strong pinning of vortices by antiferromagnetic domain boundaries in CeCo(In1-xCdx)5. New Journal of Physics, 18: 093031, pp. 1-8. doi:10.1088/1367-2630/18/9/093031.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-B9ED-4
Zusammenfassung
Wehave studied the isothermal magnetization M(H) of CeCo(In1-xCdx)(5) with x = 0.0075 and 0.01 down to 50 mK. Pronounced field-history dependent phenomena occur in the coexistence regime of the superconducting and antiferromagnetic phases. At low-fields, a phenomenological model of magnetic-flux entry well explains M(H) implying the dominance of bulk pinning effect. However, unless crystallographic quenched disorder is hysteretic, the asymmetric peak effect (ASPE) which appears at higher fields cannot be explained by the pinning of vortices due to material defects. Also, the temperature dependence of the ASPE deviates from the conventional scenario for the peak effect. Comparison of our thermodynamic phase diagrams with those from previous neutron scattering and magnetoresistance experiments indicates that the pinning of vortices takes place at the field-history dependent antiferromagnetic domain boundaries.