Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Quantitative interaction mapping reveals an extended UBX domain in ASPL that disrupts functional p97 hexamers

MPG-Autoren
/persons/resource/persons101523

Bravo-Rodriguez,  Kenny
Research Group Sánchez-García, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons101503

Sanchez-Garcia,  Elsa
Research Group Sánchez-García, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)

ncomms13047-s1.pdf
(Ergänzendes Material), 3MB

ncomms13047-s2.mov
(Ergänzendes Material), 5MB

ncomms13047-s3.mov
(Ergänzendes Material), 3MB

ncomms13047-s4.mov
(Ergänzendes Material), 6MB

ncomms13047-s5.mov
(Ergänzendes Material), 2MB

Zitation

Arumughan, A., Roske, Y., Barth, C., Forero, L. L., Bravo-Rodriguez, K., Redel, A., et al. (2016). Quantitative interaction mapping reveals an extended UBX domain in ASPL that disrupts functional p97 hexamers. Nature Communications, 7: 13047/1-13. doi:10.1038/ncomms13047.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-B049-7
Zusammenfassung
Interaction mapping is a powerful strategy to elucidate the biological function of protein assemblies and their regulators. Here, we report the generation of a quantitative interaction network, directly linking 14 human proteins to the AAA+ ATPase p97, an essential hexameric protein with multiple cellular functions. We show that the high-affinity interacting protein ASPL efficiently promotes p97 hexamer disassembly, resulting in the formation of stable p97:ASPL heterotetramers. High-resolution structural and biochemical studies indicate that an extended UBX domain (eUBX) in ASPL is critical for p97 hexamer disassembly and facilitates the assembly of p97:ASPL heterotetramers. This spontaneous process is accompanied by a reorientation of the D2 ATPase domain in p97 and a loss of its activity. Finally, we demonstrate that overproduction of ASPL disrupts p97 hexamer function in ERAD and that engineered eUBX polypeptides can induce cell death, providing a rationale for developing anti-cancer polypeptide inhibitors that may target p97 activity.