Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Vortrag

A novel approach reveals first molecular networks in the bat brain: implications for vocal communication

MPG-Autoren
/persons/resource/persons37905

Vernes,  Sonja C.
Neurogenetics of Vocal Communication Group, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;

/persons/resource/persons73285

Rodenas-Cuadrado,  Pedro
Neurogenetics of Vocal Communication Group, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons61183

Chen,  Xiaowei Sylvia
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Vernes, S. C., Rodenas-Cuadrado, P., Chen, X. S., Wiegrebe, L., & Firzlaff, U. (2015). A novel approach reveals first molecular networks in the bat brain: implications for vocal communication. Talk presented at the International Bioacoustics Conference. Murnau, Germany. 2015-09-06 - 2015-09-12.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-AC0A-1
Zusammenfassung
Bats are able to employ an astonishin- gly complex vocal repertoire for navigating their environment and conveying social information. A handful of species also show evidence for vocal learning, an extremely rare ability shared only with humans and few other animals. However, despite their obvious potential for the study of vocal communication, bats remain severely understudied at a molecular level. To address this fundamental gap we performed the first transcriptome profiling and genetic interrogation of molecular networks in the brain of a highly vo- cal bat species, P. discolor. To identify functional, biologically relevant gene networks, we utilized two contrasting co-expression network analysis methods with distinct underlying algorithms; WGCNA and MCLUST. These methods typically need large sample sizes for correct clustering, which can be prohibitive where samples are limited, such as in this study. To overcome this, we built on the WGCNA and MCLUST methods to develop a novel approach for identifying robust co-expression gene networks using few samples (≤6). Using this approach, we were able to ge- nerate tissue-specific functional gene networks from the bat PAG, a brain region fundamental for mammalian vocalization. The most highly connected of the networks identified in our study represented a cluster of genes involved in glu- tamatergic synaptic transmission. Glutamatergic signaling plays an essential role in vocalizations elicited from the PAG, suggesting that the gene network uncovered here is mechanistically impor - tant for vocal-motor control in mammals. These findings show that our innovative gene clustering approach can reveal robust biologically relevant gene co-expression networks with limited sample sizes. Moreover, this work reports the first gene network analysis performed in a bat brain and establishes P. discolor as a novel, tractable model system for understanding the genetics of vocal communication.