English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

The subtle origins of surface-warming hiatuses

MPS-Authors
/persons/resource/persons204707

Hedemann,  Christopher
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37260

Mauritsen,  Thorsten
Climate Dynamics, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37193

Jungclaus,  Johann H.
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37256

Marotzke,  Jochem
Director’s Research Group OES, The Ocean in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

hedemannetal.zip
(Supplementary material), 14MB

Citation

Hedemann, C., Mauritsen, T., Jungclaus, J. H., & Marotzke, J. (2017). The subtle origins of surface-warming hiatuses. Nature Climate Change, 7, 336-339. doi:10.1038/nclimate3274.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002D-0BBE-5
Abstract
During the first decade of the twenty-first century, the Earth’s surface warmed more slowly than climate models simulated1. This surface-warming hiatus is attributed by some studies to model errors in external forcing2, 3, 4, while others point to heat rearrangements in the ocean5, 6, 7, 8, 9, 10 caused by internal variability, the timing of which cannot be predicted by the models1. However, observational analyses disagree about which ocean region is responsible11, 12, 13, 14, 15, 16. Here we show that the hiatus could also have been caused by internal variability in the top-of-atmosphere energy imbalance. Energy budgeting for the ocean surface layer over a 100-member historical ensemble reveals that hiatuses are caused by energy-flux deviations as small as 0.08 W m−2, which can originate at the top of the atmosphere, in the ocean, or both. Budgeting with existing observations cannot constrain the origin of the recent hiatus, because the uncertainty in observations dwarfs the small flux deviations that could cause a hiatus. The sensitivity of these flux deviations to the observational dataset and to energy budget choices helps explain why previous studies conflict, and suggests that the origin of the recent hiatus may never be identified.