Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis

MPG-Autoren
/persons/resource/persons141739

Prieto,  Gonzalo
Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands;
Research Group Prieto, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

van den Berg, R., Prieto, G., Korpershoek, G., van der Wal, L. I., van Bunningen, A. J., Lægsgaard-Jørgensen, S., et al. (2016). Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis. Nature Communications, 7. doi:10.1038/ncomms13057.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-002B-85BE-3
Zusammenfassung
For decades it has been debated whether the conversion of synthesis gas to methanol over copper catalysts is sensitive or insensitive to the structure of the copper surface. Here we have systematically investigated the effect of the copper particle size in the range where changes in surface structure occur, that is, below 10 nm, for catalysts with and without zinc promotor at industrially relevant conditions for methanol synthesis. Regardless of the presence or absence of a zinc promotor in the form of zinc oxide or zinc silicate, the surface-specific activity decreases significantly for copper particles smaller than 8 nm, thus revealing structure sensitivity. In view of recent theoretical studies we propose that the methanol synthesis reaction takes place at copper surface sites with a unique configuration of atoms such as step-edge sites, which smaller particles cannot accommodate.