English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

In-vivo dynamics of the human hippocampus across the menstrual cycle

MPS-Authors
/persons/resource/persons188913

Barth,  Claudia
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons81144

Steele,  Christopher
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada;

/persons/resource/persons19872

Mueller,  Karsten
Methods and Development Unit Nuclear Magnetic Resonance, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons19531

Arelin,  Katrin
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Clinic for Cognitive Neurology, University of Leipzig, Germany;
Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Germany;

/persons/resource/persons19914

Pampel,  André
Methods and Development Unit Nuclear Magnetic Resonance, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons86895

Burmann,  Inga
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;

/persons/resource/persons20065

Villringer,  Arno
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Clinic for Cognitive Neurology, University of Leipzig, Germany;
Leipzig Research Center for Civilization Diseases (LIFE), University of Leipzig, Germany;
Integrated Research and Treatment Center Adiposity Diseases, University of Leipzig, Germany;
Berlin School of Mind and Brain, Humboldt University Berlin, Germany;

/persons/resource/persons19956

Sacher,  Julia
Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society;
Clinic for Cognitive Neurology, University of Leipzig, Germany;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Barth_Steele_2016.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Barth, C., Steele, C., Mueller, K., Rekkas, V. P., Arelin, K., Pampel, A., et al. (2016). In-vivo dynamics of the human hippocampus across the menstrual cycle. Scientific Reports, 6: 32833. doi:10.1038/srep32833.


Cite as: https://hdl.handle.net/11858/00-001M-0000-002B-854A-5
Abstract
Sex hormones fluctuate during the menstrual cycle. Evidence from animal studies suggests similar subtle fluctuations in hippocampal structure, predominantly linked to estrogen. Hippocampal abnormalities have been observed in several neuropsychiatric pathologies with prominent sexual dimorphism. Yet, the potential impact of subtle sex-hormonal fluctuations on human hippocampal structure in health is unclear. We tested the feasibility of longitudinal neuroimaging in conjunction with rigorous menstrual cycle monitoring to evaluate potential changes in hippocampal microstructure associated with physiological sex-hormonal changes. Thirty longitudinal diffusion weighted imaging scans of a single healthy female subject were acquired across two full menstrual cycles. We calculated hippocampal fractional anisotropy (FA), a measure sensitive to changes in microstructural integrity, and investigated potential correlations with estrogen. We observed a significant positive correlation between FA values and estrogen in the hippocampus bilaterally, revealing a peak in FA closely paralleling ovulation. This exploratory, single-subject study demonstrates the feasibility of a longitudinal DWI scanning protocol across the menstrual cycle and is the first to link subtle endogenous hormonal fluctuations to changes in FA in vivo. In light of recent attempts to neurally phenotype single humans, our findings highlight menstrual cycle monitoring in parallel with highly sampled individual neuroimaging data to address fundamental questions about the dynamics of plasticity in the adult brain.